Milling-master.ru

В помощь хозяину
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Технология сварки в среде углекислого газа

Сварка в углекислом газе

Сварка металла в защитной среде углекислого газа считается профессионалами одной из самых эффективных. Особенно когда дело касается соединения тонких по толщине заготовок или деталей. Именно поэтому сварка в углекислом газе используется для ремонта кузовов автомобилей, минимальная толщина которых составляет 0,5 мм. К основным достоинствам данного вида сваривания металлов можно отнести:

  • достаточно высокую производительность;
  • незначительный нагрев свариваемых заготовок, что приводит к минимальному их короблению;
  • варить швы можно в любом положении, и это не составляет большого труда, и не влияет на качество конечного результата;
  • благоприятные условия проведения сварочного процесса;
  • минимальные затраты, так как сам углекислый газ стоит очень дешево.

Проводить дуговую сварку в среде углекислого газа можно ручным способом, при помощи полуавтоматов и автоматов. В небольших цехах по ремонту автомобилей используется именно сварка в среде углекислого газа полуавтоматами. Это удобно, это позволяет регулировать подачу присадочной проволоки в зону сваривания, скорость которой варьируется в пределах 148-600 м/ч.

Режим и техника сварки

На что необходимо обратить внимание, проводя полуавтоматическую сварку в среде углекислого газа.

  1. Сварка металлов проводится на постоянном токе при обратной полярности. Это когда минус подключается к заготовке, а плюс к электроду. В данном случае с полуавтоматами к присадочной проволоке.
  2. Силу тока регулируют в зависимости от толщины свариваемых металлов, от скорости подачи присадочной проволоки в зону сваривания и от напряжения электрической дуги.
  3. Напряжение дуги является очень важной составляющей сварочного процесса. От его значения зависят размеры сварного шва. К примеру, если напряжение большое, то ширина шва в процессе сварки также становится большой.
  4. Вылет проволоки тоже играет немаловажную роль. Если вылет небольшой, то сварщик плохо видит и сам процесс соединения, и зону сварки. При большом вылете проволоки сварочная дуга дестабилизируется.

Поэтому качество сварки зависит от вылета проволоки из горелки, а также от скорости перемещения последней. Если скорость будет большая, то сварка произойдет прерывистыми участками. Если малая, то расплавленный металл заполнит не только зазор между заготовками, но и вытечет за его пределы, что приведет к последующей доработке стыка. К тому же при небольшой скорости появляется вероятность получения прожогов.

Что касается техники при сварке полуавтоматом, то она достаточно проста и не требует каких-то особых манипуляций с горелкой. В первую очередь перед началом сварочных работ необходимо убедиться, что углекислый газ подается из баллона на горелку. Для этого нужно всего лишь открыть вентиль на редукторе баллона и подставить ладонь под горелку. Небольшой ветерок говорит о том, что система подачи работает нормально.

Кстати, давление углекислоты в баллоне должно составлять 60-70 кгс/см², что контролируется манометром на редукторе, а вот давление самого газа в горелке показывает второй манометр на редукторе баллона. Его значение должно быть 2,0 кгс/см². Этот показатель не является абсолютным, потому что сам сварочный процесс может проходить при разных условиях. К примеру, сквозняки в цеху, на открытой площадке. При таких условиях давление на горелке необходимо поднять, что увеличит расход углекислоты.

Все готово, можно приступать к сварке. Для этого проволоку необходимо выпустить из горелки немного больше, чтобы легко ею можно было бы дотронуться до свариваемого металла для возбуждения дуги. Конец проволоки устанавливается на поверхность металлической заготовки, после чего сварщик нажимает на кнопку пуск на рукоятке горелки. Происходит поджиг дуги, после чего проволока убирается до необходимого размера. Открывается вентиль на редукторе баллона с углекислым газом, производится подача углекислоты в зону сварки.

В процессе углекислотной сварки горелку можно перемещать в любом направлении. Здесь важно, чтобы для сварщика данное направление было удобным. То есть, он смог бы отслеживать и контролировать сварочную операцию. При этом горелка должна располагаться под углом 60-70° по отношению к свариваемой поверхности заготовок.

Специалисты же отмечают различия направления сварки и угла наклона проволоки. К примеру, если варить слева направо, то горелку лучше держать углом назад. Если справа налево, то углом вперед. В первом случае глубина сваривания резко увеличивается, а вот ширина сварного шва заметно уменьшается. Во втором случае, наоборот, глубина проварки уменьшается, а ширина шва увеличивается. Последний вариант лучше всего подходит к сварке тонкостенных металлических деталей.

Внимание! Завершать сварочный процесс необходимо полным заполнением кратера расплавленным металлом. Подачу проволоки после этого нужно прекращать, а вот с отключением газа лучше повременить. Здесь важно, чтобы расплавленный металл в сварочной ванне остывал постепенно. Поэтому стоит немного поддержать температурный режим до того, пока металл не застынет.

Особенности процесса сваривания

Сварка в углекислом газе полуавтоматом – это практически тот же процесс, что и сварка под флюсом. Все дело в том, что не все металлы могут свариваться без защитного слоя. Но сваривание углекислотой – это в первую очередь дешево, потому другие виды сварки полуавтоматами также имеют высокое качество конечного результата.

В чем суть применения углекислого газа. Он защищает зону сварки от окружающего воздуха, в котором присутствует влажность и кислород. Но под действием высоких температур углекислота распадается на тот же кислород и угарный газ. Так вот этот кислород начинает взаимодействовать с металлом, окисляя его. Что, конечно, не очень хорошо. Вот почему так важно нейтрализовать окисляющий химический элемент.

Это можно сделать одним единственным способом – подавать в зону сварки металл, в состав которого входят раскислители. А это кремний или марганец. Так как эти два металла более активны, чем железо, то они первыми и вступают в реакцию с кислородом. Поэтому для сварки в углекислоте используется стальная проволока, в состав которой входят два эти элемента. Это очень важный момент. При этом считается, что оптимальное соотношение марганца к кремнию в составе присадочной проволоки должно быть 1,5-2,0. То есть, марганца должно быть почти в два раза больше.

Самое главное, что при взаимодействии кислорода с марганцем и кремнием образуются оксиды этих металлов. Они не растворяются в жидком расплавленном металле, образованном в сварочной ванне. Но хорошо взаимодействуют друг с другом, превращаясь в шлак, который легко выводится из зоны сваривания. Вот несколько особенностей сварки в углекислом газе.

Комплектность оборудования

Сварочный пост комплектуется нижеследующим оборудованием и принадлежностями.

  • Источник постоянного тока. Это может быть сварочный трансформатор или инвертор. Второй источник поддерживает стабильную дугу.
  • Газовый баллон вместимостью 40 литров, куда может поместиться углекислый газ весом 25 кг. Его спокойно хватит на непрерывную работу в течение 15 часов.
  • Подающий механизм. Сегодня производители предлагают огромнейший ассортимент этого устройства, так что выбрать есть из чего. К примеру, очень популярная модель А-547-У. Механизм подачи располагается в небольшом металлическом чемоданчике, который легко переносится. Некоторые модели снабжаются ремнем для переноски на плече. В чемоданчик помещается и катушка с проволокой. Сюда же установлен газовый клапан, как вторичный защитный элемент. Первый, понятно, редуктор на баллоне.
  • Промежуточным элементом от баллона до горелки – осушитель (подогреватель электрический) газа.
  • Горелка с комплектом шлангов и кабелей.

Итак, сварка металлических заготовок в среде защитного углекислого газа – эффективный способ сваривания. Он зависит от выбранного режима работы и техники проведения процесса. А в качестве конечного результата получается хорошо сформированный шов с отличным проваром по всей глубине зазора, плюс великолепные технические свойства наплавленного металла.

Правила сварки в среде углекислого газа

Хорошо знакомая профессионалам сварка в среде углекислого газа, как правило, полностью автоматизирована или же проводится в полуавтоматическом режиме.

В основу этого метода заложено свойство углекислоты разлагаться под термическим воздействием на две отдельные составляющие, одна из которых (угарный газ или «СО») надёжно изолирует активную зону от окружающей среды.

Особенности технологии

Однако из-за образования в месте сварки углекислотного компонента и кислорода этот процесс сопровождается ещё одной реакцией. Совместное действие этих газов вызывает выгорание из расплавленного металла углерода и легирующих добавок.

В результате этого расход углекислоты при сварке резко возрастает, что создаёт определённые сложности с реализацией самого процесса.

В связи с указанной спецификой сварки в углекислом газе этот режим заслуживает особого рассмотрения.

Читать еще:  Новые технологии в сварке металла

Для нейтрализации образующегося угарного газа автоматическая сварка с применением углекислоты предполагает использование специальных проволок марок Св–08ГС или Св–08Г2С с небольшой примесью марганца и кремния.

По показателю химической активности содержащиеся в них реагенты значительно превосходят железо, и поэтому вступают в реакцию раньше, не допуская окисления самого металла.

В процессе сварки, протекающей в специально создаваемой защитной среде углекислого газа, марганец вместе с кремнием образуют хорошо плавящееся соединение, а затем в виде шлака просто выводятся на поверхность.

По сравнению с другими известными методами организации сварочного процесса технология сварки в углекислом газе достаточно проста и к тому же отличается следующими преимуществами:

  • этот вид сплавления металлических заготовок осуществляется на токах с обратной полярностью, что дает более стабильную дугу и исключает возможность нежелательных деформаций;
  • за счёт применения специального электрода снижается эффект разбрызгивания расходного материала, что позволяет частично снизить непроизводительные затраты;
  • при наплавке металла допускается использование прямой токовой полярности, обеспечивающей повышение её эффективности в полуавтоматическом режиме примерно в 1,6-1,8 раза.

При проведении сварки в углекислом газе по этому методу может использоваться сварочный аппарат типа «осциллятор», функционирующий по принципу высокочастотного преобразователя напряжения и тока.

Работа полуавтоматом в углекислотной среде

Выбор сварочного режима в среде углекислого газа осуществляется в зависимости от толщины обрабатываемых металлических заготовок индивидуально для каждого образца оборудования. С параметрами этих режимов, существенно влияющими на качество сварки, можно ознакомиться в таблице.

Подробный анализ данных этой таблицы позволяет убедиться в следующем:

  • глубина провара при электродуговой сварке в среде углекислого газа заметно возрастает при увеличении рабочего сварочного тока;
  • мощность дуги в зоне сварки напрямую зависит от её длины (при возрастании напряжения питания ширина и глубина образующегося провара заметно увеличиваются);
  • выбор оптимального темпа подачи проволоки определяется условием стабильности дуги при фиксированном напряжении питания;
  • правильность выбора размера рабочей части электрода (его вылета) также влияет на качество дуги. При увеличении этого показателя свойства дуги и получаемого шва существенно ухудшаются.

С другой стороны при слишком коротком вылете стержня наблюдать за процессом сваривания через защитную маску становится слишком сложно, что приводит к частому выгоранию контактного наконечника.

Специалисты рекомендуют настраивать оборудование соответствующим образом, то есть увязывать величину вылета с диаметром проволоки, применяемой в процессе сварки.

После ознакомления с режимами работы в углекислом газе можно перейти к рассмотрению самого сварочного процесса.

Подготовка и запуск

Перед началом сварки с полуавтоматом необходимо внимательно ознакомиться с имеющимися на панели прибора элементами управления. Основное внимание должно уделяться переключателю режимов сварочного тока, обеспечивающего широкий выбор их значений (от минимума для тонких заготовок и до максимума – для самых толстых).

Кроме того, следует убедиться в том, что скорость подачи проволоки в зону сгорания с окислами углерода надёжно регулируется отдельно расположенным на панели переключателем.

Стоит обратить внимание и на то, что отдельные модели полуавтоматов с целью удобства работы оснащаются таймерами включения.

Перед запуском сварочного аппарата обязательно убедитесь в соответствии его электрических параметров данным электросети, а также в наличии цепи нагрузки. Для настройки автоматического устройства сначала в него вставляется сварочная проволока. Для этого предусмотрен специальный приёмник с механизмом подачи, располагающийся под крышкой автомата.

Все остальные пусковые операции, включая управление каналами, по которым подают углекислоту для сварки, выполняются согласно инструкции, прилагаемой к каждому сварочному аппарату.

Особенности TIG метода

Расшифровка этого обозначения сварочного процесса в переводе с английского языка дословно означает «вольфрам и инертный газ». Такой прямой перевод полностью отражает суть процесса, при котором электрический стержень с вольфрамовым покрытием «сгорает» в среде того или иного инертного газа.

В данном случае за инертную среду принимается углекислотный состав в сочетании с вольфрамовым электродом. Температура плавления последнего достаточно высока (её величина немногим менее 4000 °), благодаря чему таким стержнем могут свариваться практически все виды чёрных и цветных металлов.

Электрод с вольфрамовым покрытием перед началом работ закрепляется в специальной цанге с последующей фиксацией в корпусе горелки. Излишки его длины, временно незадействованные в процессе сварки, защищаются специальным колпаком, исключающим возможность замыкания на «массу».

Устройство горелки

На конце горелки для углекислого газа предусмотрено сопло с керамической окантовкой, а по его центру размещается сам электрод. При этом углекислый газ поступает в зону сварки по каналам, окаймляющим сопло с вольфрамовым электродом.

Сварочный процесс запускается посредством специальной кнопки, размещённой на корпусе горелки. После её нажатия подаётся питание от автомата и одновременно начинает поступать газ.

Сварка ТИГ организуется по принципу сплавления зажженной дугой непосредственно кромок обрабатываемого металла. Для получения качественного шва вполне достаточно, чтобы сопрягаемые части изделия были размещены вплотную друг к другу.

При наличии между ними зазора или в случаях, когда необходимо получить очень прочный шов – обычно используется присадочная проволока. Её подача в зону плавления осуществляется свободной рукой оператора.

Сварка деталей по технологии ТИГ в середе углекислого газа по причине высокотемпературного режима обработки деталей широко применяется в самых различных областях промышленного производства.

Этот метод может использоваться как при сплавлении изделий, изготовленных на основе обычной углеродистой стали, так и при обработке заготовок из широкого спектра цветных металлов.

Техника безопасности при работе с углекислотой

Специальными требованиями действующих стандартов (ГОСТ 12.1.004-76 и 12.1.005-76) порядок защиты от угарного газа, образующегося в процессе сварки изделий в углекислой среде, строго регламентируется.

Для обеспечения безопасных условий сварки в этих документах особо оговаривается перечень средств защиты, используемых при работе с этим опасным составом.

К такому защитному снаряжению относятся специальные лицевые маски и элементы одежды исполнителя (электросварщика).

Завершая обзор сварочных работ с использованием углекислого газа, надо отметить, что его применение характерно для автоматических и полуавтоматических режимов обработки металлов плавлением. Особенностью является то, что при определённых условиях таким методом можно сваривать практически любые металлы.

Сварка в среде углекислого газа. Полуавтоматическая сварка в среде СО2

Содержание

Способ сварки в среде углекислого газа впервые был разработан в середине 20-го века советскими исследователями К.В. Любавским и Н.М. Новожиловым. Благодаря низкой стоимости углекислого газа, высокой производительности и универсальности этого способа, сварка в углекислоте получила широкое распространение в промышленности, быту, при строительных и монтажных работах.

Сущность процесса сварки в углекислом газе

Сущность сварки заключаются в следующем. Поступающий для защиты зоны сварки углекислый газ под воздействием высокой температуры дуги распадается на угарный газ и кислород. Процесс распада происходит по реакции:

В результате реакции в зоне сварки образуется смесь из трёх газов: углекислый газ (СО2), угарный газ (СО) и кислород (О2). Поток этих газов не только защищает зону сварки от вредного воздействия атмосферного воздуха, но и активно взаимодействует с железом и углеродом, находящимися в составе стали по реакциям:

Нейтрализовать окислительное действие углекислого газа можно путём введения в сварочную проволоку избыточного кремния и марганца. Кремний и марганец химически более активны, чем железо, поэтому, вначале окисляются они по реакциям:

Пока в зоне сварки присутствуют в свободном состоянии более активные кремний и марганец, окисления железа и углерода не происходит.

Хорошее качество сварных соединений при сварке углеродистых сталей обеспечивается при соотношении количества марганца к кремнию в соотношении: Mn/Si=1,5…2. Формирующиеся в процессе сварки оксиды кремния и марганца не растворяются в сварочной ванне, а реагируют друг другом, образуя легкоплавкое соединение, которое в виде шлака быстро выводится на поверхность жидкого металла.

Особенности сварки в углекислоте

Сваривание металлов в среде СО2 выполняют постоянным током обратной полярности. Если сварку производить постоянным током прямой полярности, то это отрицательно сказывается на стабильности электрической дуги, в результате появляется дефект формирования формы шва и электродный металл расходуется на угар и разбрызгивание.

Но если выполняется е сварка, а наплавка, то рекомендуется использовать именно прямую полярность тока, т.к коэффициент наплавки у него в 1,6-1,8 раза выше, чем у тока обратной полярности.

Сварку можно выполнять и на переменном токе. В этом случае в сварочную цепь необходимо включить осциллятор. Источниками постоянного сварочного тока являются преобразователи тока с жёсткой характеристикой.

Читать еще:  Технология сварки горизонтальных швов

Полуавтоматическая сварка в среде углекислого газа

Сварочный пост для сварки в углекислоте

Схема сварочного поста общего вида для сварки полуавтоматом в среде углекислого газа представлена на рисунке:

1 — держатель; 2 — подающий механизм; 3 — включатель; 4 — защитный щиток; 5 — манометр на 0,6МПа; 6 — переходной штуцер для установки манометра; 7 — кислородный газовый редуктор с манометром высокого давления; 8 — осушитель газа; 9 — подогреватель газа; 10 — баллон с углекислым газом; 11 — сварочный выпрямитель, или генератор; 12 — пульт управления.

Подготовка металла под сварку

Сварка листов из низколегированной стали или углеродистой успешно сваривается в среде углекислого газа. При этом сварку тонких листов (толщиной 0,6-1,0мм) сваривают с отбортовой кромок. Допускается сварка без отбортовки, но зазор между свариваемыми кромками не должен превышать 0,3-0,5мм.

Сварку листов толщиной 1-8мм допускается производить без разделки кромок. Максимально допустимый зазор при этом составляет 1,0мм. На листах толщиной 8-12мм выполняют V-образную разделку. Если толщина свариваемого металла превышает 12мм, то рекомендуется X-образная разделка.

Перед началом сварки сварные кромки тщательно зачищаются до металлического блеска от краски, масла, окалины и других загрязнений. Можно делать это вручную, можно применить дробеструйную или пескоструйную обработку. Если перед сваркой необходимо прихватить детали, то прихватка углеродистых сталей выполняются вручную электродами Э42, Э42А, либо полуавтоматом в углекислом газе. Прихватка легированных сталей выполняется электродами соответствующего назначения.

Сварочная проволока для полуавтоматической сварки

Для сварки в среде углекислого газа применяется проволока с повышенным содержанием кремния и марганца. Наличие каких-либо загрязнений или покрытий на поверхности проволоки не допускается, т.к. их присутствие отрицательно сказывается устойчивости режимов и стабильности электрической дуги.

Марка сварочной проволоки зависит от свариваемого материала. В таблице ниже представлены наиболее распространённые марки проволоки для сварки полуавтоматом в среде защитного газа:

Режимы сварки полуавтоматом в углекислоте

Режимы сварки зависят от толщины свариваемого металла. При увеличении толщины металла уменьшается скорость сварки и увеличивается сила тока. Величина рабочего напряжения дуги должна обеспечивать устойчивое горение дуги, которая должна быть как можно более короткой (1,5-4мм). При большей длине дуги её горений становится неустойчивым, разбрызгивание металла увеличивается, возрастает вероятность окисления и азотирования жидкой ванны.

Для сварки тонкого металла режимы сварки представлены в таблице:

Скорость подачи сварочной проволоки зависит от величины сварочного тока и напряжения. Расход углекислого газа должен быть таким, чтобы обеспечить надёжную защиту зоны сварки от влияния окружающей среды. Расход углекислоты при сварке тонкого металла приведён в таблице выше. При сварке металла большой толщины сила сварочного тока составляет 500-1000А, а расход защитного газа составляет 15-20 л/мин.

Расстояние от мундштука горелки до свариваемого металла при силе тока до 150А составляет 7-15мм, а при силе тока до 500А — 15-25мм.

Величина вылета электродной проволоки зависит от её диаметра. При диаметре 0,5-1,2мм вылет составляет 8-15мм, а при диаметре 1,2-3мм — 15-35мм.

Техника сварки полуавтоматом в среде углекислого газа

Для уменьшения риска возникновения горячих трещин при сварке, первый (корневой) шов рекомендуется сваривать при малой величине тока. Техника выполнения многослойного шва в углекислом газе представлена на рисунке:

Сварку полуавтоматом можно выполняют «углом вперёд» (справа налево), или «углом назад» (слева направо). Если сварка происходит «углом вперёд», то сварной шов получается широкий, а глубина проплавления уменьшается. Этот способ подходит для сварки тонкостенных изделий и для сварки сталей, склонных к образованию закалочных структур.

При сварке «углом назад» глубина проплавления увеличивается, а ширина шва уменьшается. Угол наклона сварочной горелки по отношению к свариваемому изделию составляет 15°.

Завершать выполнение сварного шва рекомендуется заполнением кратера металлом. После этого необходимо остановить подачу сварочной проволоки и прекратить подачу тока. А подачу углекислого газа необходимо продолжать до тех пор, пока расплавленный металл полностью не затвердеет.

Повышение производительности сварки в углекислом газе

Приём увеличения силы сварочного тока

Сварка в CO2 часто производится на форсированных режимах при повышенной величине сварочного тока. Для проволоки диаметром 1,2мм сила тока составляет 350-380А, а для проволоки диаметром 1,4мм — 400-450А. Но простое увеличение силы тока допустимо только при сварке швов в нижнем положении.

При сварке вертикальных и потолочных швов силу тока можно увеличивать лишь в том случае, если повысить скорость кристаллизации сварочной ванны. Скорость кристаллизации можно повысить, если сообщить колебательные движения сварочной проволоке вдоль шва и поперёк него, а также периодическим отключением подачи проволоки. При отключении подачи проволоки дуга угасает, а к моменту следующего зажигания дуги металл успевает частично кристаллизоваться.

Сварка с увеличением вылета сварочной проволоки

Этот способ увеличения производительности особенно эффективен, если используется тонкая проволока. Повышение производительности достигается за счёт того, что проволока подаётся в зону сварки уже нагретой до высокой температуры, поэтому скорость её плавлении возрастает и увеличивается объём расплавленного металла.

Чтобы избежать самопроизвольного движения конца сварочной проволоки при её большом вылете, применяют специальные наконечники из фарфоровых или керамических трубок. При увеличении длины вылета на 40-50мм, производительность сварки и объём наплавленного металла возрастает на 30-40%. Но глубина проплавления основного металла немного снижается.

Импульсно-дуговая сварка в CO2

В различных металлоконструкциях объём сварки угловых швов достигает 80%. Примерно половина из них свариваются в вертикальном, или наклонном положении (под углом более 15 ° от нижнего положения). Сварка таких швов выполняется, в большинстве случаев, «на подъём», чтобы обеспечить хороший провар корня шва. Сварка в таких положения приводит к усилению шва. Величина усиления при сварке вертикальных швов может достигать 25% от общего сечения шва.

Но усиление шва не увеличивает его прочность и не повышает работоспособность конструкции, поэтому его следует делать, по-возможности, минимальным. Применение импульсно-дуговой сварки в углекислом газе позволяет уменьшить усиление шва, или убрать его совсем.

Особенности горения дуги и переноса электродного металла позволяют выполнять полуавтоматическую и автоматическую сварку вертикальных и наклонных угловых швов и тавровых соединений при толщине металла до 12мм в направлении сверху вниз на спуск. При этом достигается равномерный провар по всей длине соединения. Используя этот приём можно получить нормальную или слегка вогнутую форму сварного шва. Сечение шва уменьшается на 25-30%. Соответственно, уменьшается расход электроэнергии и, примерно, в 3 раза увеличивается скорости сварки.

3.3. Сварка в среде углекислого газа

Сварка в углекислом газе (сварка в С02) является одним из наиболее распространенных способов сварки. Она экономична, обеспечивает достаточно высокое качество швов, особенно при сварке низкоуглеродистых сталей, требует более низкой квалификации сварщика, чем ручная, позволяет выполнять швы в различных пространственных положениях. В качестве оборудования используются обычно полуавтоматы, но сварка может быть и автоматической. В международной практике способ сокращенно называется MAG (Metal Active Gas).

Схема процесса приведена на рис. 3.30. Защитный газ 1, выходя из сопла 4, вытесняет воздух из зоны горения. Сварочная проволока 2 подается вниз роликами 3, которые вращаются двигаРис. 3.30. Схема процесса сварки в защитных газах плавящимся электродом

телом подающего механизма. Подвод сварочного тока к проволоке осуществляется через скользящий контакт 5.

Учитывая, что С02 — активный газ и может вступать во взаимодействие с расплавленным металлом, сварка имеет ряд особенностей.

В зоне дуги углекислый газ диссоциирует:

Образовавшийся кислород взаимодействует с расплавленным металлом сварочной ванны с образованием оксида железа:

Окисление сварочной ванны ухудшает механические свойства шва и в первую очередь его пластичность. Для предотвращения этого процесса в сварочную ванну вводят элементы-раскислители, хорошо взаимодействующие с кислородом. Обычно это марганец и кремний. Раскислители выводят в шлак избыток кислорода и на участках сварочной ванны, имеющих пониженную температуру, восстанавливают железо из оксидов:

Введение раскислителей в сварочную ванну обычно осуществляется через проволоку. Поэтому при сварке в С02 используется сварочная проволока, легированная марганцем и кремнием. При сварке низкоуглеродистых сталей эго обычно проволока марки Св08Г2С, содержащая 0,08 % С, 2 % Мп и 1 % 81 (ГОСТ 2246-70), или проволоки С38П, 04811, состав которых приведен в 180 14341-2010.

Однако, несмотря на введение раскислителей, характеристики пластичности шва получаются ниже, чем при сварке под флюсом или ручной сварке электродами с основным покрытием. Поэтому сварку в С02 не рекомендуют использовать для ответственных конструкций, работающих при низких температурах в условиях переменных и ударных нагрузок.

Читать еще:  Сварка газом технология

Имеет свои особенности и перенос электродного металла при сварке в С02, что связано со специфическими свойствами углекислого газа — высокой теплопроводностью в области температур сварочной дуги и большими затратами теплоты на диссоциацию многоатомного газа С02. Это приводит к интенсивному отбору тепла с поверхности дуги и ее сжатию. Вследствие сжатия равнодействующая сила, приложенная к капле электродного металла, направлена вверх и препятствует ее переносу в сварочную ванну. При этом создаются условия для роста капли и ее асимметричного расположения по отношению к оси электрода, что часто приводит к выносу капли из зоны дуги.

Перенос электродного металла может осуществляться короткими замыканиями. При увеличении силы тока он переходит в крупнокапельный. Рассмотрим процесс подробнее. Перенос одной капли расплавленного металла можно разделить на шесть стадий (рис. 3.31).

Первая стадия — начало плавления проволоки и образование капли. По мере роста капли передача тепла от дуги к проволоке ухудшается. Скорость плавления проволоки (цпл) при этом уменьшается. Скорость же подачи проволоки (цпп) остается прежней. На короткий промежуток времени оп_п становится больше ц|1Л и капля приближается к изделию. Сила тока при этом достаточно стабильна (рис. 3.31, а).

Вторая стадия — касание капли сварочной ванны. Начинается режим короткого замыкания, ток растет. Капля в месте ее касания

Рис. 3.31. Стадии переноса одной капли электродного металла (в) и изменение силы тока при неуправляемом переносе (а) и при управляемом переносе по системе 5ТТ (6)

сварочной ванны вследствие большой плотности тока перегревается, в результате чего происходит выброс брызг.

Третья стадия — режим короткого замыкания, дуга гаснет, сварочный ток максимальный, капля максимально нагрета, уменьшаются силы поверхностного натяжения, удерживающие ее на конце проволоки, возрастают электродинамические силы.

Вследствие этого процесса на четвертой стадии между проволокой и каплей образуется перемычка, плотность тока в которой возрастает и которая разрывается с выбросом брызг (пятая стадия). Длина дуги восстанавливается, восстанавливается сила тока, капля переходит в сварочную ванну (шестая стадия). Затем цикл переноса капли повторяется.

Время переноса одной капли составляет 0,01. 0,002 с, т.е. за 1 с переносится 100. 500 капель (в зависимости от режима сварки). Поэтому сварщик не замечает моментов короткого замыкания и воспринимает дугу как горящую постоянно.

Рис. 3.32. Процесс зажигания дуги и переноса капли электродного

При увеличении силы сварочного тока капля может отрываться раньше, чем коснется ванны. В этом случае перенос короткими замыканиями переходит в крупнокапельный, при котором брызги дополнительно образуются при падении капли в сварочную ванну, а также при возможном выдувании капли из зоны сварки.

Различные стадии процесса переноса капли приведены на рис. 3.32. Внизу показана осциллограмма изменения силы тока за время переноса одной капли. Пики тока соответствуют коротким замыканиям.

Описанный процесс позволяет понять механизм разбрызгивания электродного металла.

Основными причинами брызг являются: перегрев нижней части капли при ее касании сварочной ванны; разрыв перемычки между каплей и проволокой, выдувание капли из зоны сварки; расплескивание сварочной ванны. Некоторые из описанных явлений представлены на рис. 3.33.

Возможно образование брызг и при нарушениях технологического процесса сварки. Например, при наличии на проволоке ржавчины, что приводит к частым взрывам крупных капель; при неправильном соотношении между параметрами режима сварки, когда проволока выбрасывается из зоны сварки нерасплавившимися частями. Аналогичные выбросы возможны и вначале сварки при плохих динамических характеристиках источника питания дуги.

На рис. 3.34 приведена зависимость потерь на разбрызгивание от силы сварочного тока для различных диаметров сварочной про-

Рис. 3.33. Последовательность переноса капли электродного металла: а — с расплескиванием сварочной ванны; б — с выдуванием капли из зоны

волоки. Для каждого диаметра проволоки существует область токов, при которых разбрызгивание максимально — эта область соответствует крупнокапельному переносу. Увеличивается разбрызгивание и при увеличении диаметра проволоки.

Повышенное разбрызгивание, которое достигает 10. 15 % от массы проволоки, является существенным недостатком сварки

Рис. 3.34. Зависимость потерь на разбрызгивание от силы сварочного тока при различных диаметрах проволоки (проволока Св08Г2С)

в СО2, так как ведет к перерасходу проволоки, требует дополнительных затрат на зачистку свариваемого металла и сопла горелки полуавтомата. Причем брызги при сварке в СО2 сильнее привариваются к металлу, чем при сварке покрытыми электродами, так как практически не покрыты шлаковой пленкой.

Улучшить процесс переноса электродного металла и уменьшить разбрызгивание позволяет введение в сварочную проволоку щелочных и щелочноземельных металлов (цезия, рубидия и др.), однако это существенно увеличивает стоимость сварочной проволоки и не всегда приемлемо для предприятий. Возможно также применение порошковых сварочных проволок (подробнее см. в 4.2).

В последнее время в связи с распространением инверторных источников питания, которые обладают значительно меньшей по сравнению с тиристорными инерцией реагирования силового блока на управляющий сигнал, появился ряд систем управления переносом в процессе сварки в СО2.

Одной из первых была создана система STT (Surface Tension Transfer — перенос за счет сил поверхностного натяжения) (см. рис. 3.31, 6), разработанная фирмой Lincoln Electric. Цель системы — максимально уменьшить электродинамическое воздействие на каплю, заставив ее плавно перетекать в сварочную ванну. Это делается за счет управления силой тока на стадии переноса одной капли. Это иногда называют управлением эпюрой сварочного тока, в отличие от систем управления сварочным током как режимом сварки.

В период начинает образовываться капля, /св = const. Когда капля коснулась металла, сварочный ток аппаратными средствами на несколько миллисекунд выключается (период ^-?2)- Это позволяет снизить последствия короткого замыкания, капля не перегревается и выброса брызг не происходит. Далее, чтобы капля не остыла, сила тока кратковременно увеличивается (период ?2

?з)> а когда происходит разрыв перемычки (период ?з-is), ток снова выключается. Перемычка разрывается без воздействия электродинамических сил, поэтому брызг расплавленного металла практически нет. После этого надо снова начать интенсивное плавление проволоки, поэтому ток увеличивается (?5), а затем возвращается в исходное для начала переноса значение (?6). Таким образом, наиболее проблемные моменты переноса — касание капли металла

и разрыв перемычки — происходят при отключенном токе, что резко уменьшает количество брызг — до 1. 2 %.

В последнее время появилась новая модификация системы — ЭТТ II, которая использует более совершенную элементную базу и программное обеспечение для формирования обратных связей с дугой и ее управления. Система хорошо зарекомендовала себя при сварке корневого шва трубопроводов, который, как правило, является наиболее проблемным при сварке.

По другому пути пошла фирма Ргошш. Посчитав, что импульс тока большой величины (период на рис. 3.31, 6) чрезмерно перегревает металл, они решили осуществлять сброс капли с проволоки нс за счет электродинамических сил, а за счет механического воздействия на проволоку. После короткого замыкания (рис. 3.35, а) следует реверс подачи проволоки. Она кратковременно поднимается вверх, зажигается дуга, которая расплавляет каплю металла на проволоке (рис. 3.35, б, в). В этот момент проволока начинает опускаться (рис. 3.35, г, д) и капля доставляется в сварочную ванну. Для ее обрыва проволока снова идет вверх и цикл повторяется (рис. 3.35, е).

Рис. 3.35. Стадии переноса капли по системе СМТ

Система получила название Cold Metal Transfer (СМТ) — «холодный перенос металла». Система СМТ широко распространена при сварке тонкого металла, например кузовов автомобилей.

Существуют и другие аппаратные способы снижения разбрызгивания, разработанные другими фирмами.

Основными параметрами режима сварки в СО2 являются диаметр электродной проволоки d„, сила сварочного тока /св, напряжение на дуге U,v скорость сварки г;св, скорость подачи сварочной проволоки оПЛ1, вылет электродной проволоки i, расход защитного газа Сг

Сила сварочного тока, как и при сварке иод флюсом, выбирается в зависимости от требуемой глубины проплавления:

где #пр — глубина проплавления; k?, — коэффициент, зависящий от диаметра проволоки (табл. 3.8).

Ссылка на основную публикацию
Adblock
detector