Milling-master.ru

В помощь хозяину
2 627 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Технология сварки ферм

Технологический процесс

1. Подготовка металла к сварке: низколегированные стали разрезают на заготовки газовой, плазменной или воздушно-дуговой резкой с последующей зачисткой участков нагрева резцовыми или абразивными инструментами до удаления следов огневой резки. Перед сборкой стыка свариваемые кромки на ширину до 20 мм зачищают до металлического блеска и обезжиривают. Стыки собирают в сборочных приспособлениях или с помощью прихваток. Их ставят с применением присадочных проволок той же марки, какой будет выполнена сварка.

Высота прихватки равна 0,6 — 0,7 толщины свариваемых деталей, но не менее 3 мм, при толщине стенки до 10 мм или 5-8 мм при толщине стенки более 10 мм. Прихватки необходимо выполнять с полным проваром. Их поверхность должны быть тщательно зачищена. Прихватки, имеющие недопустимые дефекты следует удалить механическим способом. Сварочную проволоку в течение 1,2 — 2 ч прокаливают при температуре 150 — 250?С. Ржавчина на проволоке резко ухудшает стабильность процесса сварки. Удалять ржавчину рекомендуется травлением проволоки в 5 % — ном растворе соляной кислоты с последующим прокаливанием 1,5 — 2 ч при температуре 150 — 250?С.

2. Технологический процесс сварки металлической фермы начинается с изготовления ее элементов — уголков, швеллеров, косынок и т. п. по заданным чертежам. Изготовленные элементы фермы собирают на стеллаже или в стапелях и скрепляют короткими сварными швами. Последовательность наложения сварных швов при сварке фермы, собранной на прихватках, должна выполняться в соответствии с технологией, предусматривающей получение минимальных короблений, допустимых без последующей рихтовки фермы — порядок сварки узлов всегда следует вести от середины фермы к ее концам.

1. На стеллажах, пользуясь фиксаторами, ограничителями и закрепляющими устройствами, выкладывают согласно чертежу первые ветви верхнего и нижнего пояса фермы.

2. В узловых точках поясов устанавливают косынки, прижимают их струбцинами или скобками к ветвям поясов и прихватывают.

3. Проверяют правильность положения поясов и узловых точек, измеряя линейкой или струной по направлению стоек, раскосов и связей их теоретическую длину между взаимно противоположными точками и одновременно наносят на косынках риски по направлению элементов решетки.

4. Выкладывают первые ветви стоек и раскосов, выдерживая величину минуса в каждом узле и, ориентируясь по совпадению рисок на косынках и на концах стержней решетки, прижимают стержни к косынкам и ставят прихватки.

5. Кантуют собранную ветвь фермы на 180°, выкладывают согласно чертежу прокладки на поясах и элементах решетки, прижимают их и прихватывают.

6. Выкладывают вторые ветви поясов, стоек, раскосов и связей, ориентируясь по первой ветви каждого элемента, прижимают их и прихватывают к косынкам и прокладкам.

7. Производят сварку собранной фермы. Сварку узлов начинают от середины фермы и ведут симметрично к ее концам. В каждом узле сначала приваривают косынки к поясам, а затем стойки и раскосы к косынкам.

8. Кантуют второй раз ферму на 180° и производят в таком же порядке сварку узлов со стороны первых ветвей поясов, стоек и раскосов.

9. После сварки всех швов ферма подвергается заключительным операциям, по окончании которых поступает в склад готовой продукции.

Сборка и сварка фермы

Ферма как система стержней из профильного проката или труб, соединенных в узлах. Материалы, необходимые для выполнения работ. Оборудование, инструменты и инвентарь. Требования качества выполненных работ. Выбор режима сварки. Технология выполнения швов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ государственное БЮДЖЕТНОЕ образовательное учреждение

высшего профессионального образования

«тюменский государственный НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ»

ПИСЬМЕННАЯ ЭКЗАМЕНАЦИОННАЯ РАБОТА

1. Характеристика изделия

2. Материалы, необходимые для выполнения работ

3. Оборудование, инструменты, приспособления, инвентарь

4. Технологический процесс

5. Технология выполнения швов

6. Выбор режима сварки

7. Требования качества выполненных работ

8. Организация рабочего места

9. Безопасные приемы труда

Список используемой литературы

1. Характеристика изделия

Ферма — это решетчатая конструкция — система стержней из профильного проката или труб, соединенных в узлах таким образом, что стержни испытывают растяжение или сжатие, а иногда сжатие с продольным изгибом. Металлические сварные фермы широко используют при строительстве промышленных и гражданских зданий, мостов, мачт, вышек и т. д. Это объясняется высокой прочностью и жесткостью ферм и небольшими затратами металла на их изготовление.

Ферма состоит из элементов: пояс, стойка, раскос, шпренгель (опорный раскос).

2. Материалы, необходимые для выполнения работ

Для сварки фермы был выбран прокат профильной трубы 50 х 25мм из стали 09Г2С. Стенка трубы 1,12 мм, длина — 6,12 м.

Сталь 09Г2С — низколегированная конструкционная для сварных работ. 09Г2С — сталь, свариваемая без ограничений, при сварке не требует подогрева и последующей термообработки, не флокеночувствительна и не склонна к отпускной хрупкости.

Химический состав в % стали 09Г2С:

Для сварки фермы подходят следующие марки сварочной проволоки: Св-08ГС, Св-08Г2С, Св-18ХГС. Для полуавтоматической сварки в углекислом газе (СО2) использовать сварочную проволоку, желательно омедненную, диаметром 0,6-1 мм, также нельзя использовать ржавую и гнутую сварочную проволоку.

При сварке используется проволока Св-08Г2С-О. Омеднение защищает проволоку от окисления и улучшает токоподвод.

Основные характеристики Св-08Г2С-О:

— проволока выпускается диаметром 0,8; 1,0; 1,2; 1,4; 1,6; 2,0; 2,5; 3,0; 3,8; 4,0; 5,0 мм;

— обработка поверхности: без покрытия, омедненная, полированная (остаточная смазка менее 0,03%), химически полированная проволока;

— газозащитная — CO2 или смесь Ag-80% и CO?-20%;

— тип тока: постоянный обратной полярности.

Защитным газом в данной сварке выступает углекислый газ (СО2).

Углекислый газ является активным, это значит, что он защищает зону сварки от воздуха, растворяется в жидком металле, либо вступает с ним в химическое взаимодействие.

Читать еще:  Ацетиленовая сварка технология

Углекислый газ бесцветный, со слабым запахом, с резко выраженными окислительными свойствами, хорошо растворяется в воде. Тяжелее воздуха в 1,5 раза, может скапливаться в плохо проветриваемых помещениях, в колодцах, приямках. ферма сварка шов труба

Для снижения влажности СО2, рекомендуется установить баллон вентилем вниз и через 1-2 ч открыть вентиль на 8-10 с для удаления воды. Перед сваркой из нормально установленного баллона выпускают небольшое количество газа, чтобы удалить попавший внутрь воздух. В углекислом газе сваривают чугун, низко- и среднеуглеродистые, низколегированные конструкционные коррозионностойкие стали. Цвет баллона — черный, надпись желтая.

СО2 используется для ручной дуговой сварки на переменном и постоянном токе в различных пространственных положениях ответственных конструкций из углеродистых и низколегированных сталей с нормативным пределом прочности до 500 МПа.

3. Оборудование, инструменты, приспособления, инвентарь

Для сварки фермы рациональнее применить полуавтоматическую сварку в углекислом газе. Конструктивно сварочный полуавтомат состоит из источника тока (выпрямителя) и механизма подачи сварочной проволоки, выполненных в одном корпусе или раздельно и комплектуется сварочной горелкой (рис.3.1.). Основной принцип полуавтоматической сварки MIG/MAG заключается в том, что металлическая проволока во время сварки подается в зону сварки через сварочную горелку и плавится в электрической дуге. Сварочная проволока при этом методе играет двойную роль — она является токопроводящим электродом и служит присадочным материалом.

Рис. 3.1. Основной механизм подачи проволоки толкающего типа с обычной горелкой

Исходя из конструктивных особенностей оборудования для полуавтоматической сварки в углекислом газе используют полуавтомат «Спутник». Силовой блок питания вырабатывает переменный сварочный ток, силовой выпрямитель преобразует переменный ток в постоянный, дроссель сглаживает пульсации тока после преобразования, блок управления включает и выключает силовой блок питания, пневмоклапан для подачи защитного газа в зону сварки и подающий механизм. Шлангом управления производится включение блока управления и производится сварка. На панели управления расположены все органы управления полуавтомата (кроме кнопки включения схемы, она на ручке шланга управления): регулировка подачи электродной проволоки, регулировка силы сварочного тока и напряжения, тумблер включения сети, сигнальная лампа (показывает наличие напряжения), универсальный разъем для подключения шланга управления, вывод для подключения кабеля обратного тока (массы).

Принцип работы полуавтомата основан на сварке металлов в среде защитного газа плавящимся электродом.

Посредством шланга управления в место сварки автоматически подается электрод и защитный газ, а перемещение сварочной горелки по шву производится вручную сварщиком.

Порядковый номер полуавтомата выбит на передней панели около подающего механизма и на табличке на задней панели. Пломбировка полуавтомата отсутствует.

Во время работы полуавтомата необходимо соблюдать время периода работы и паузы (ПВ), т.к. во время сварки происходит нагрев дросселя, силового выпрямителя и силового трансформатора, при нагреве они могут выйти из строя. Время сварки 3 минуты. Время паузы (перерыва) 2 минуты.

Во время паузы происходит охлаждение за счет естественной вентиляции силовых агрегатов полуавтомата через имеющиеся вентиляционные отверстия в корпусе.

Для сварки использовать сварочную проволоку, желательно омедненную, диаметром 0,6-1 мм (комплект поставки по диаметр 0,8 мм) нельзя использовать ржавую и гнутую сварочную проволоку. Запрещается перемещать полуавтомат за шланг управления. Способ регулирования сварочного тока ступенчатый.

Таблица 3.1. Технические характеристики полуавтомата «Спутник»:

Особенности технологии изготовления решетчатых конструкций — ферм

Общим для решетчатых конструкций является наличие в узлах соединений нескольких отдельных стержней того или иного сечения.

Фермы, как и балки, работают на поперечный изгиб. Конструктивные формы балок проще, однако, при достаточно больших пролетах применение ферм оказывается более экономичным. Характерные схемы решеток ферм показаны на рис. 39. Треугольная (а) и раскосная (б) схемы являются основными. Фермы, воспринимающие нагрузки по верхнему или нижнему поясу, с целью уменьшения длины панели изготовляют по схемам, изображенным на рис. 39, в, г. Иногда применяют без раскосные фермы с жесткими узлами (рис. 39, д). По очертанию поясов фермы могут быть с параллельными поясами или с поясами, образованными ломаной линией (рис. 39, е). По назначению фермы разделяют на стропильные и мостовые.

Стропильные фермы работают при статической нагрузке. В качестве стержней используют прокатные и реже гнутые замкнутые сварные профили и трубы. В общем объеме производства фермы из парных прокатных уголков составляют около 90%. Стержни в узлах соединяют либо непосредственно, либо с помощью вспомогательных элементов дуговой сваркой. Перспективно применение точечной контактной сварки. Из-за статического характера нагружения стропильных ферм чувствительность к концентрации напряжений в точечных соединениях мала; в то же время контактная сварка обеспечивает значительное повышение производительности сборочно­сварочных работ.

Мостовые фермы работают при переменных нагрузках и нередко при низких климатических температурах, что определяет высокую чувствительность их сварных соединений к концентрации напряжений. Поэтому в процессе проектирования и изготовления сварных мостовых пролетных строений особое внимание уделяют предотвращению и устранению концентрации напряжений в сварных соединениях и узлах.

Решетчатые пролетные строения с ездой понизу применяют для железнодорожных мостов. Для автодорожных мостов более характерно использование стальных и сталежелезобетонных сплошностенчатых пролетных строений с ездой поверху.

Пространственные решетчатые конструкции башенного типа (например, радиомачты, радиобашни, буровые вышки) вследствие большой высоты подвергаются значительным ветровым нагрузкам, поэтому их изготовляют преимущественно из трубчатых элементов. Поскольку размеры этих конструкций превышают габарит железнодорожного подвижного состава, их монтируют из сваренных на заводе секций. Основные стойки башни располагаются по углам граней секций и являются поясами плоских ферм. Стойки составляются из отдельных труб стандартной длины и через приваренные к их торцам фланцы соединяются между собой болтами.

В особенно трудных условиях работают буровые вышки для добычи нефти и газа в открытом море на глубинах порядка 150.200 м. Помимо ветровой они испытывают значительные нагрузки от ударов волн. Поэтому в этих конструкциях используют трубы больших диаметров. Так, опоры буровых вышек для добычи нефти в Северном море на глубинах более 150 м сооружают из труб диаметром до 4270 мм при толщине стенок до 64 мм.

Читать еще:  Сварка титана аргоном технология видео

Мачты линий электропередачи также являются пространственными решетчатыми конструкциями, но для их изготовления используют прокат в виде уголков.

К решетчатым конструкциям следует отнести и сварные элементы арматуры железобетона: сетки, плоские и пространственные каркасы. Сетки из взаимно перпендикулярных стержней круглого или периодического профиля, соединяемых контактной сваркой, могут быть рулонные (рис. 40, а) и плоские (рис. 40, б). Их назначение — армирование плит перекрытий, перегородок, покрытия дорог, аэродромов, каналов и других элементов конструкций и сооружении. Типы сварных каркасов разнообразны. Плоские каркасы используют в балочных перекрытиях (рис. 41), они состоят из продольной арматуры (поясов) и соединительной решетки в виде отдельных стержней или непрерывной змейки. Плоские каркасы, как и сетки, сваривают на точечных контактных машинах. Пространственные каркасы обычно имеют поясные продольные стержни и соединительную решетку либо в виде отдельных стержней, располагаемых по каждой из граней, либо в виде непрерывной проволоки, навиваемой по спирали.

Рис. 40. Схемы сварных сеток

Рис. 41. Армирование балок плоскими сварными каркасами

При сборке ферм (рис. 39) особое внимание уделяют правильному центрированию стержней в узлах во избежание появления изгибающих моментов, не учтенных расчетом. Разнообразие типов и размеров ферм иногда не позволяют использовать преимущества их сборки в инвентарных кондукторах. В этих случаях нередко применяют метод копирования. Первую собранную по разметке ферму (рис. 42, а) закрепляют на стеллаже — она служит копиром. При сборке детали каждой очередной фермы 2 (рис. 42, б) раскладывают и совмещают с деталями 1 копирной фермы. После скрепления деталей 2 прихватками собранную ферму (пока с односторонними уголками) снимают с копира, укладывают на стеллаже отдельно и ставят на нее недостающие элементы парные уголки 3 (рис. 42, в). Когда сборка требуемого количества ферм закончена, копирную ферму также дособирают и отправляют на сварку.

Рис. 42. Сборка ферм по копиру

Такой способ прост и эффективен, но не обеспечивает необходимой точности размеров ферм и правильного расположения монтажных отверстий, например, для увеличения точности сборки на концах копира укрепляют специальные съемные фиксаторы (рис. 43), которые определяют положение деталей с монтажными отверстиями и ограничивают геометрические размеры конструкции в пределах заданных допусков.

Сборка ферм по копиру с фиксаторами производится в следующем порядке. Сначала устанавливают концевые планки 2, предварительно сваренные с фасонками 1. Их правильное положение обеспечивают совмещением монтажных отверстий концевых планок с отверстиями в стойке фиксатора IV. Затем на копире раскладывают все остальные элементы,

производят прихватку, ферму снимают с копира, кантуют и дособирают, как описано выше.

Рис. 43. Копир с фиксатором для сборки стропильных ферм:

I — основание фиксатора; II — крепление фиксатора к копиру; III — копир; IV- стойка фиксатора

При большом количестве выпускаемых ферм одного типоразмера становится экономически целесообразным использование кондукторов и кантователей. На рис. 44 показан кондуктор, смонтированный на базе плиты с Т-образными пазами, состоящей из отдельных секций и оснащенной элементами универсальных сборных сборочных приспособлений (УССП). Номера на схеме фермы соответствуют номерам под рисунками приспособлений. Регулируемые опоры обеспечивают фиксацию деталей в горизонтальной плоскости; регулировка по высоте осуществляется при помощи резьбы; фиксация — через отверстия в детали с использованием пробки. Детали, не имеющие отверстий, устанавливают по упорам и перед
прихваткой зажимают их при помощи ободочных приспособлений: эксцентриковых зажимов, струбцин, вилок или при помощи переносной пневмогидравлической струбцины.

Рис. 44. Кондуктор для ферм с применением универсальных сборочных

В кондукторе фермы собирают без кантовки. Для поворота их при сборке используют устройство, дополняющее сборочный кондуктор 1 (рис. 45). С помощью рамки 2 собранную ферму сначала ставят в вертикальное положение, а затем передают на стенд 3, причем в каждом из этих положений

выполняют соответствующие швы. В это время на кондукторе 1 производят сборку следующей фермы.

Рис. 45 Схема устройства для сборки и сварки ферм

Использованию механизированных поточных методов при изготовлении ферм препятствует не только разнообразие типоразмеров и небольшое число изделий в серии, но и низкая технологичность типовых конструктивных решений. Большое количество деталей, составляющих ферму, усложняет сборочную операцию, приводит к необходимости выполнения множества швов, различным образом ориентированных в пространстве, и требует кантовки собранного изделия при сварке. Качество получаемых соединений в значительной мере зависит от квалификации сварщиков.

Существенное совершенствование производства стропильных ферм может дать использование дугоконтактной точечной сварки. При этом способе сквозное проплавление элементов суммарной толщиной 20. 40 мм без образования отверстия обеспечивается предварительным их нагревом между электродами контактной машины. Визуальное установление наличия
сквозного проплавления позволяет надежно и просто контролировать качество соединения. Кроме того, появляется возможность резкого сокращения количества деталей путем выполнения бесфасоночных соединений, а также отпадает необходимость кантовки фермы, поскольку сварку производят с одной стороны.

На рис. 46 показан бесфасоночный узел стропильной фермы из одиночных уголков с точечными соединениями. Последовательность выполнения сборочно-сварочных операций представлена на рис. 47, а — г и 7.56, а — з. На тележку — кондуктор по упорам последовательно укладывают сначала поясные элементы (рис. 47, а), затем стойки и раскосы (рис. 47, б), закрепляя их прижимами. Каждый узел собранной фермы тележка-кондуктор последовательно подает в зону сварки установок, смонтированных на базе точечной контактной машины (рис. 47, е). Продольное движение машины обеспечивает перемещение электродов от точки к точке соединения, а поворот — постановку точек по раскосу (рис. 47, г). Верхний электрод имеет канал для пропускания сварочной проволоки и мундштук для подвода тока. В нижнем электроде предусмотрена выемка сферической формы для удержания сварочной ванны и формирования проплава точки. После продвижения к месту постановки точки электроды сжимают свариваемые элементы. При включении тока происходит нагрев зоны точки с образованием прихваточного соединения по кольцевому контуру I (рис. 48, а). Затем верхний электрод поднимается (рис. 48, б); в зону сварки подается флюс (рис. 48, в); включается подача присадочной проволоки (рис. 48, г) и выполняется первая проплавная точка (рис. 48, д). После отвода нижнего электрода и шагового перемещения электродов (рис. 7.48, е), дуговой сварочный цикл повторяется, но уже без предварительного нагрева (рис. 48, ж), пропусканием тока между электродами. Это позволяет располагать дуговые точки близко друг к другу, создавая компактные соединения, позволяющие обходиться без фасонок. После сварки всех точек на стойке и

Читать еще:  Технология сварка труб ручной дуговой сваркой

уборки флюса (рис. 48, з) машина возвращается в исходное положение, поворачивается и аналогично производит сварку точек раскоса.

Рис. 46. Бесфасоночный узел стропильной фермы, выполняемой контактно — дуговой точечной сваркой

П — П и n п П П а °

1 II Н IT I II Ц f н II, f ц f-H

Рис 48. Технология выполнения проплавного точечного

Уменьшить массу фермы позволяет использование трубчатых профилей. Однако для труб круглого сечения непосредственное соединение элементов в узле получается трудоемким (рис. 49, а). Иногда концы труб относительно небольших диаметров сплющивают (осаживают), что упрощает их соединение в узлах дуговой сваркой (рис. 49, б, в). Значительно проще оказывается соединение в узлах труб прямоугольного или квадратного сечения.

Рис. 49. Узлы стропильных ферм из труб круглого сечения

На рис. 50 представлены схема и узлы стропильной фермы из труб прямоугольного сечения, где показано конструктивное оформление крепления элементов решетки к нижнему и верхнему поясам, а также монтажных стыков в середине пролета.

Рис. 50. Стропильная ферма из труб прямоугольного сечения

Сварные узлы ферм

В фермах, в узлах соединения уголков рекомендуется избегать сварки уголков впритык (рис. 20, 1). Нахлесточное соединение (вид 2) с обваркой контура уголка прочнее и жестче. Целесообразно перекрещивать полки уголков, перпендикулярные к плоскости соединения. Конструкции 4, 6 значительно жестче соединений 3, 5.

Во избежание появления в стержнях лишних изгибающих и крутящих моментов целесообразно соединять элементы фермы так, чтобы линии центров изгиба сечений пересекались в одной точке (конструкции 7, 9 — неправильные; 8, 10 — правильные).

Желательно совмещать линии центров изгиба также в поперечной плоскости. Соединение полками, обращенными в одну сторону (виды 11, 12), целесообразнее соединения полками, обращенными в разные стороны (виды 13, 14).

В последнем случае в результате смещения линий центров изгиба в узле под нагрузкой возникает скручивающий момент.

Соединение полками в одну сторону компактнее. В конструкциях 11, 12 ширина узла (в плоскости, перпендикулярной к плоскости чертежа) примерно вдвое меньше, чем в конструкциях 13, 14. Однако в конструкциях 13, 14 узлы фермы в целом получаются пространственно более жесткими; наложение швов проще, вследствие чего эти конструкции широко применяют на практике.

Жесткость соединения повышают косынками. Соединение с накладными косынками (вид 16) значительно прочнее и жестче, чем соединение с косынками встык (вид 15).

На видах 17, 18 изображены примеры многолучевых соединений с накладными косынками. Сравнительные преимущества и недостатки соединений с полками, обращенными в одну сторону (вид 17) и в разные стороны (вид 18), такие же, как и для бескосыночных соединений (виды 11—14).

На видах 19—22 представлены примеры соединения уголков в пространственных узлах.

В трубчатых фермах наиболее простое и надежное соединение — стыковое (виды 23, 24). Недостаток его — ограниченность числа труб, которые могут быть соединены в одном узле. Создание пространственных узлов возможно лишь при условии, что диаметр центральной трубы значительно превышает диаметр присоединяемых труб (вид 25).

Расплющивание присоединяемых труб (виды 26, 27) позволяет увеличить число соединяемых в узле труб (вид 28) и повышает жесткость соединения (только в плоскости расплющивания). При соединении труб различного диаметра трубу меньшего диаметра для увеличения жесткости узла развальцовывают на конус (виды 29, 30).

Применяют также сварку в муфтах из цельных (виды 31—33) или сварных (вид 34) труб.

Чаше всего соединения труб усиливают косынками. Косынки приваривают встык (виды 35, 36); встык и впрорезь по одной из труб (виды 37, 38); впрорезь по всем соединяемым трубам (виды 39, 40).

Присоединение косынками впрорезь с разделкой концов труб в горячем состоянии «на ложку» (виды 41, 42) позволяет соединять в одном узле несколько труб и применяется в многолучевых узлах. Недостатки соединения — малая жесткость в плоскости расположения косынок и трудоемкость операций разделки труб.

Для увеличения жесткости применяют двойные косынки (виды 43, 44). Расстояние между косынками (в направлении, перпендикулярном к их плоскости) целесообразно выбирать так, чтобы кромки смежных косынок можно было проварить одним швом m (виды 45, 46).

Наиболее прочны и жестки U-образные косынки (виды 47, 48).

В тяжелонагруженных узлах применяют соединение на штампованных накладках, охватывающих присоединяемые трубы (виды 49, 50). Жесткость соединения можно повысить, придавая накладкам косынки, свариваемые точечной сваркой (виды 51, 52).

В многолучевых соединениях применяют приварку труб к звездообразным штамповкам с гнездами (вид 53) или цапфами (вид 54) под трубы. Многолучевые узлы соединяют также на сварных коробках: призматических (виды 55, 56), цилиндрических (вид 57) или сферических (вид 58). Последним способом можно соединять трубы практически под любым пространственным углом.

На видах 59—62 представлены примеры шарнирного соединения сварных труб в ферменных узлах.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию