Сварочно технологические свойства
Большая Энциклопедия Нефти и Газа
Сварочно-технологическое свойство — электрод
Сварочно-технологические свойства электродов с различными видами покрытий следующие. [2]
Сварочно-технологические свойства электродов в значительной степени определяются электродным покрытием. [3]
При неудовлетворительных сварочно-технологических свойствах электродов они должны быть повторно прокалены. Если после этого при проверке сварочно-технологических свойств получены неудовлетворительные результаты, то данная партия электродов бракуется, на нее оформляется акт-рекламация, который направляется заводу-изготовителю и в свою вышестоящую организацию. [4]
Независимо от наличия сертификата сварочно-технологические свойства электродов каждой партии следует проверять по ГОСТ 9466 — 75 и на отсутствие дефектов в металле шва. Образцы для технологических испытаний допускается изготовлять из листовой стали марок, для сварки которых предназначены электроды. [6]
Наряду с качеством и свойствами металла сварного шва важное значение имеют сварочно-технологические свойства электродов : стабильность горения дуги на постоянном и переменном токе, пригодность для сварки в различных пространственных положениях, производительность, допустимая длина дуги, формирование шва, отделимость шлаковой корки, коэффициент наплавки. [7]
Введение в покрытие такого количества железного порошка с одновременным увеличением толщины покрытия ( до определенных пределов) позволяет не только улучшить сварочно-технологические свойства электродов , но и повысить их производительность. Электроды второй группы называют универсальными электродами повышенной производительности. [8]
При установлении состава электродов и в процессе их изготовления основное внимание приходится уделять правильному сочетанию различных компонентов, выполняющих определенные функции, только таким образом можно обеспечить надлежащие сварочно-технологические свойства электродов и получение наплавленного металла требуемого состава и свойств. [9]
Качество прокалки контролируют путем выдержки контрольных проб в воде или во влажной атмосфере. Кроме того, проверяют сварочно-технологические свойства электродов и качество металла шва в соответствии с требованиями ГОСТ. [10]
Большинство покрытий электродов обладает гигроскопичностью. В отсыревшем покрытии, например целлюлозного типа, происходят необратимые структурные изменения, резко ухудшающие сварочно-технологические свойства электродов . [11]
В то же время при кратковременном хранении разгерметизированных пачек с электродами с целлюлозным покрытием абсолютная влажность окружающего воздуха мало влияет на содержание водорода в металле шва. Однако это не значит, что условия хранения электродов с целлюлозным покрытием при монтаже не следует регламентировать; установлено, что в отсыревшем целлюлозном покрытии происходят необратимые структурные изменения, резко ухудшающие не только адгезию покрытия к стержню, но и сварочно-технологические свойства электродов . [12]
Входной контроль сварочных материалов
Привет всем, что такое входной контроль сварочных материалов? Давайте разберемся, как его следует производить и зачем он нужен. Честно говоря, о том, что сварочные материалы надо испытывать перед их использованием я узнал не давно, может на стройках, где я работал это была не моя зона ответственности, может про это не знал заказчик и не требовал от подрядчиков, а может я тесно не общался с руководителями сварочных работ.
Зачем нам с этим вопросом разбираться, если заказчики ничего не требуют? Когда на стройке происходят несчастные случаи и дело доходит до суда, то первым делом изучают документы (СНиПам, СП, ГОСТам, РТМ 1С, ПН АЭ Г) на основание каких правил должен был строиться объект.
Например в проекте указаны документы в которых написаны правила проведения входного контроля сварочных материалов, а этим в организации никто не занимался, акты и журналы не оформляли. В этой ситуации спросят у руководителей, почему не проводили и ничего не оформляли и оправдания подрядчика о том, что им заказчик ничего не говорил или они не знали, что это надо делать, в этом случае не помогут.
В промышленном и атомном строительстве при монтаже оборудования и трубопроводов большой объем работ приходится на сварку. Думаю всем понятно, если не качественно заварят трубопроводы или оборудование относящиеся к категории опасные производственные объекты, то при разрыве сварных швов может случиться авария в масштабах не только завода, но и города, а может и области.
Входной контроль сварочных материалов сводиться не только к их осмотру, но и проверки сертификатов на закупленную партию. Что относиться к сварочным материалам? Это электроды, сварочная проволока, флюсы, газы, сварочная лента и прутки.
Электроды это стержень из электропроводного материала, предназначенный для подвода тока к свариваемому изделию.
Сварочная проволока, расплавляясь при сварке, служит присадочным металлом, заполняющим область шва. Материал сварочной проволоки должен соответствовать материалу заготовок по своим физическим свойствам.
Флюсы предназначены для растворения окислов на металлической поверхности, что облегчает смачивание заготовки расплавленным металлом, а также выступает в качестве барьера для доступа кислорода путем покрытия горячей поверхности металла, предотвращая его окисление. В некоторых случаях расплав флюса служит в качестве теплообменной среды, что облегчает нагрев сварочного стыка.
Сварочная лента и сварочные прутки используется при сварке также в качестве присадочного материала.
Защитные газы предохраняют место сварки от контакта с газами воздуха.
Входной контроль сварочных материалов в общестрое
Изготовление и монтаж металлоконструкций не обходится без сварки. Основной документ, в который стоит часто заглядывать при производстве работ это СНиП 3.03.01-87 (Актуализированная редакция СП 70.13330.2012)- Несущие и ограждающие конструкции. Про входной контроль сварочных материалов в этом документе написано только в пункте 10.1.10:
Производственный контроль качества по ГОСТ 16037 для сварочных работ должен включать по процессу производства:
— входной контроль рабочей технологической документации, наличия паспортов (сертификатов) на основной металл, на металлоконструкции, арматурные и закладные изделия, основные сварочные материалы, квалификации сварщиков, состояния оборудования, инструмента и приспособлений, качество сборки и подготовки элементов под сварку.
Получается, что в общестрое при сварке металлоконструкций входной контроль сварочных материалов сводиться к осмотру внешнего вида принимаемых материалов и наличие сертификатов.
Если вам снабжение сертификатов не предоставит, то возможно заказчик потребует провести механические испытания сварочных материалов. При сдаче исполнительной документации следует прикладывать к актам ответственных конструкций сертификаты на сварочные материалы.
Входной контроль сварочных материалов при проведение работ по монтажу энергетического оборудования.
В данных видах работ к входному контролю сварочных материалах относятся более серьезно, чем в общестрое, здесь основной документ РД 153-34.1-003-01 Сварка, термообработка и контроль трубных систем котлов и трубопроводов при монтаже и ремонте энергетического оборудования (РТМ-1с).
Это РД (руководящий документ) предназначен для строительных организаций, которые работают в промышленном строительстве занимаются монтажом и ремонтом трубопроводов и трубных систем, паровых и водогрейных котлов независимо от параметров рабочей среды, а также изготовление трубопроводов с рабочим давлением до 2,2 МПа (22 кгс/кв. см) и температурой не более 425 град. C и отдельных элементов котлов (водяных экономайзеров, пароперегревателей и др.).
О том, как проводить контроль сварочных материалов электродов, флюса, газа, проволоки расписано на 9 страницах.
Пункт 5.4 Входной контроль сварочных материалов и материалов для дефектоскопии:
5.4.1 Перед использованием сварочных материалов (электродов, сварочной проволоки, флюса и др.) должны быть проверены:
а) наличие сертификата (на электроды, проволоку и флюс), полнота приведенных в нем данных и их соответствие требованиям стандарта, технических условий или паспорта на конкретные сварочные материалы;
б) наличие на каждом упаковочном месте (пачке, коробке, ящике, мотке, бухте и пр.) соответствующих этикеток (ярлыков) или бирок с проверкой полноты указанных в них данных;
в) сохранность упаковок и самих материалов;
г) для баллонов с газом — наличие документа, регламентированного стандартом на соответствующий газ.
5.4.2. При отсутствии сертификата или неполноте сертификатных сведений сварочный материал данной партии может быть допущен к использованию после проведения испытаний и получения положительных результатов по всем показателям, установленным соответствующим нормативным техническим документом (НТД) (стандартом, техническими условиями или паспортом) на данный вид материала.
В случае расхождения сертификатных данных с требованиями соответствующего НТД партия сварочных материалов к использованию не допускается.
Результаты проверки химического состава сварочной проволоки должны удовлетворять требованиям, приведенным в приложении 8. При неудовлетворительных результатах химического анализа проводят повторный анализ на удвоенном числе проб, который является окончательным.
5.4.3. При обнаружении повреждения или порчи упаковки или самих материалов вопрос о возможности использования этих материалов решает руководитель сварочных работ совместно с ОТК (СТК) предприятия (организации).
5.4.4. Каждая часть сварочной проволоки, отделенная от бухты (мотка), должна быть снабжена биркой, на которой указываются марка, номер плавки и диаметр проволоки.
Контроль электродов для ручной дуговой сварки
5.4.5. Перед применением каждой партии электродов независимо от наличия сертификата должны быть проконтролированы:
а) сварочно-технологические свойства;
б) соответствие наплавленного металла легированных электродов требованиям марочного состава.
Результаты проверки электродов должны быть оформлены соответствующим актом (см. раздел 21).
Перед выдачей электродов сварщику необходимо убедиться в том, что они были прокалены и срок действия прокалки не истек.
Контроль сварочной проволоки
5.4.17. Каждая партия сварочной проволоки перед выдачей на производственный участок должна быть проконтролирована путем осмотра поверхности проволоки в каждой бухте (мотке, катушке). На поверхности проволоки не должно быть окалины, ржавчины, следов смазки, задиров, вмятин и других дефектов и загрязнений.
5.4.18. Каждая бухта (моток, катушка) легированной проволоки сплошного сечения перед сваркой (независимо от способа сварки) должна быть проверена стилоскопированием на соответствие содержания основных легирующих элементов требованиям, приведенным в приложении 8. Стилоскопированию подвергают концы каждой бухты (мотка, катушки). При неудовлетворительных результатах стилоскопирования бухта не может быть использована для сварки до установления точного химического состава проволоки количественным химическим анализом.
5.4.19. Каждая партия сварочной проволоки сплошного сечения, предназначенная для сварки под флюсом изделий, на которые распространяются правила Госгортехнадзора России, должна быть проверена на механические свойства металла шва в сочетании с флюсом той партии, которая будет использоваться в производстве с проволокой данной партии. Для этого свариваются встык две пластины и из этого сварного соединения изготавливаются три образца для испытания на ударный изгиб и два — для испытания на растяжение, чтобы определить временное сопротивление и относительное удлинение (см. рис. 3.2). Испытание проводится при температуре +20°С. Результаты испытания считаются удовлетворительными, если временное сопротивление разрыву будет не ниже минимально допустимого для основного металла, который будет свариваться этими сварочными материалами, относительное удлинение — не менее 16%, ударная вязкость — не менее 49 Дж/см (5 кгс·м/см ).
5.4.20. Каждая партия порошковой проволоки перед применением должна быть подвергнута проверке сварочно-технологических свойств путем наплавки валика на пластину и визуального контроля с помощью лупы пятикратного увеличения, чтобы выявить трещины, поры и неровности на поверхности валика. Валик наплавляется на пластину толщиной 14-18 мм из углеродистой стали (марок СтЗпс; СтЗсп; 20) в нижнем положении по режиму, предписанному для данной марки проволоки. Сварочно-технологические свойства считаются удовлетворительными, если на поверхности валика не обнаружено трещин, максимальный размер пор не более 1,2 мм и их число на любых 100 мм протяженности валика не более пяти; углубление между чешуйками должно быть не более 1,5 мм.
5.4.21. Перед выдачей флюса для сварки необходимо убедиться в том, что он был подвергнут прокалке в соответствии с требованиями п. 2.3.3 и срок ее действия не истек, а также проверке в соответствии с п. 5.4.19.
5.4.22. Перед использованием газа из каждого баллона следует проверить качество газа, для чего надо наплавить на пластину или трубу валик длиной 100-150 мм и по внешнему виду поверхности наплавки определить ее качество. При обнаружении пор в металле шва газ, находящийся в данном баллоне, бракуют
В основном здесь так же, как и в общестрое особое внимание надо уделить сертификатам при приемке сварочных материалов. Примеры форм оформления актов входного контроля можно посмотреть в этом же РД приложение №27.
Входной контроль сварочных материалов в атомной энергетике
Атомная энергетика очень серьезно подходит к контролю сварочных материалов. Наличие сертификатов и хороший внешний вид принимаемых сварочных материалов не достаточно для того чтобы вас допустили к производству сварочных работ.
Согласно ПН АЭ Г-7-010-89 раздел 6 КОНТРОЛЬ КАЧЕСТВА СВАРОЧНЫХ И НАПЛАВОЧНЫХ МАТЕРИАЛОВ, вы должны будете провести испытание всех сварочных материалов применяемых в вашем проекте на Атомных станциях и предоставить акты.
6.1. Общие требования
6.1.1. Все партии сварочных и наплавочных материалов (проволоки, лент, флюсов, покрытых электродов и защитных газов), подлежащие использованию при сварке или наплавке оборудования и трубопроводов, подлежат контролю.
6.1.2. Контроль качества сварочных и наплавочных материалов включает:
— проверку сопроводительной документации;
— проверку упаковки и состояния сварочных (наплавочных) материалов;
— контроль металла шва и наплавленного металла.
6.1.3. Контроль качества сварочных и наплавочных материалов должно осуществлять предприятие, использующее эти материалы при сварке (наплавке) оборудования и трубопроводов.
Контроль металла шва (наплавленного металла) на предприятии, использующем сварочные материалы, допускается не проводить, если указанный контроль для каждой партии (для каждого подлежащего производственному использованию сочетания партий присадочных материалов и флюсов) сварочных материалов был проведен другим предприятием в полном соответствии с требованиями настоящих ПК, а результаты контроля оформлены документально и переданы предприятию, использующему проконтролированные партии сварочных материалов.
6.1.4. Контроль качества каждой партии сварочных (наплавочных) материалов должен быть проведен до начала их производственного использования.
6.1.5. При использовании предприятием — изготовителем сварочных (наплавочных) материалов собственного производства допускается совмещение приемосдаточного и указанного в настоящем разделе контроля конкретных партий сварочных (наплавочных) материалов.
Если у вас не будет актов, что были проведены испытания применяемых сварочных материалов, то представители АЭС не примут вашу исполнительную документацию.
Примеры актов входного контроля сварочных материалов
Чтоб испытывать сварочные материалы строительная организация должна иметь минимум оборудованные сварочные посты на строительной площадки, а максимум еще и токарный цех для выточки металлических изделий для сварки и заключить договор с лабораторией.
Какие размеры заготовок из металла необходимо подготовить для проведение механических испытаний сварных соединений можно узнать из «ГОСТ 6996-66 (ИСО 4136-89, ИСО 5173-81, ИСО 5177-81) Сварные соединения. Методы определения механических свойств (с Изменениями N 1, 2, 3, 4)»
Журналы, которые необходимо заполнять при входном контроле сварочных материалов: входного контроля сварочных материалов, учета прокалки покрытых электродов, регистрации технологических испытаний покрытых электродов.
Вот несколько примеров актов, которые заполняются и сдаются вместе с исполнительной документацией на атомных станциях.
Буду рад вашим комментариям или дополнениям по данной теме.
Ваша благодарность за мою статью это клик по любой кнопке ниже. Спасибо!
Покрытые электроды, характеристики, технические требования. Классификация, маркировка ГОСТ 9466-75
Технические требования к покрытым электродам
Сварочные материалы должны иметь сертификаты изготовителя, подтверждающие их соответствие стандартам или техническим условиям на изготовление;
Должны иметь целостную упаковку и этикетки (бирки) на каждом упаковочном месте с указанием марки и партии ;
Электроды должны храниться в отапливаемых помещениях при температуре не ниже +15 С и влажности воздуха не выше 60%(нормальные условия). При соблюдении условий хранения, срок годности электродов не ограничен.
Должны проходить обязательный входной контроль. При входном контроле должны проверяться:
- наличие сертификата;
- сохранность упаковки и наличие на каждом упаковочном месте этикетки (бирки);
- сварочно-технологические свойства;
- для легированных электродов соответствие химического состава наплавленного металла данной марки;
Перед применением электроды должны быть прокалены по режиму, указанному на этикетке.
Основные характеристики покрытых электродов ГОСТ 9466-75
1. Тип электрода:
- для конструкционных и теплоустойчивых сталей по ГОСТ 9467 (Э– покрытый электрод, число-гарантированный предел прочности наплавленного металла (в кгна мм), буква А улучшенные пластические свойства (например, Э42,Э50А);
- для высоколегированных сталей по ГОСТ 10052 примерный химический состав наплавленного металла (например, Э-07Х20Н9)
2. Марка электрода, устанавливается разработчиком ТУ на электроды (например МТГ-01К,ТМЛ-3У, УОНИ 1355)
3. Диамет рэлектрода
5. Род и полярность тока
По видам покрытия электроды подразделяются
- с кислым покрытием – А;
- с основным покрытием – Б;
- c целлюлозным покрытием – Ц;
- с рутиловым покрытием – Р;
- с покрытием смешанного вида – соответствующее двойное условное обозначение (РА, РБ, РЦ);
- с прочими видами покрытий – П.
При наличии в составе покрытия железного порошка в количестве более 20% к обозначению вида покрытия электродов добавляется буква Ж.
По допустимым пространственным положениям сварки или наплавки электроды подразделяются:
- для всех положений — 1;
- для всех положений, кроме вертикального сверху вниз — 2;
- для нижнего, горизонтального на вертикальной плоскости и вертикального снизу вверх — 3;
- для нижнего и нижнего в лодочку — 4.
По назначению электроды подразделяются:
- для сварки углеродистых и низколегированных конструкционных сталей с временным сопротивлением разрыву до 60 кгс/мм2 — У (условное обозначение);
- для сварки легированных конструкционных сталей с временным сопротивлением разрыву свыше 60 кгс/мм2 — Л;
- для сварки легированных теплоустойчивых сталей — Т;
- для сварки высоколегированных сталей с особыми свойствами — В;
- для наплавки поверхностных слоев с особыми свойствами — Н.
По толщине покрытия электроды подразделяются:
В зависимости от отношения D/d (D — диаметр покрытия, d — диаметр электрода, определяемый диаметром стержня)
- с тонким покрытием (D/d≤1,20) — М;
- со средним покрытием (1,20 1,80) — Г.
Этикетка коробки с электродами
Каждая коробка (пачка) с электродами снабжаются этикеткой или маркировкой, на которой указано:
- наименование или товарный знак предприятия-изготовителя;
- полное обозначение электродов по ГОСТ 9466-75;
- номер партии и дата изготовления;
- область применения электродов;
- режимы сварочного тока в зависимости от диаметра электродов и положения сварки или наплавки;
- особые условия выполнения сварки или наплавки;
- свойства металла шва, наплавленного металла или сварного соединения (специальные механические свойства, не указанные в условном обозначении электродов);
- допустимое содержание влаги в покрытии на момент использования электродов;
- рекомендуемый режим прокаливания электродов перед сваркой;
- масса электродов в упаковке.
Этикетка на пачке с электродами
Условное обозначение электродов по ГОСТ 9466-75
Пример обозначения электрода по ГОСТ 9466-75
Условное обозначение положений сварки
Сварочно-технологические свойства электродов ГОСТ 9466
Сварочно-технологические свойства электродов должны удовлетворять следующим требованиям:
- дуга должна легко возбуждаться и стабильно гореть;
- покрытие должно плавиться равномерно, без чрезмерного разбрызгивания, отваливания кусков и образования чехла или козырька, препятствующих нормальному плавлению электрода при сварке во всех пространственных положениях, рекомендованных для электродов данной марки;
- образующийся при сварке шлак должен обеспечивать правильное формирование валиков шва и легко удаляться после охлаждения;
- металле шва не должно быть трещин, надрывов и поверхностных пор;
Максимальные размеры и число внутренних пор и шлаковых включений в металле шва не должны превышать норм, указанных в стандарте
При проверке сварочно-технологических свойств электродов выполняют сварку одного одностороннего таврового образца и одного двухстороннего. Вместо одностороннего таврового образца, если оговорено в ТУ на электроды, выполняют трубный стыковой образец. Односторонний тавровый образец разрушают для контроля наличия внутренних дефектов. Трубный образец подвергают радиографическому контролю или послойной обработке. На двусторонних тавровых образцах проверяют склонность швов к образованию трещин.
Сварку угловых швов тавровых образцов производят за один проход
При получении неудовлетворительных результатов проверки поп. 4.6 стандарта, а также по п. 4.7 стандарта в части прочности или коэффициента массы покрытия проводят повторную проверку на удвоенном количестве электродов, отобранных от партии. Результаты повторной проверки являются окончательными и распространяются на всю партию
При получении неудовлетворительных результатов проверки по п. 4.7 стандарта в части содержания влаги в покрытии или по п. 4.8 стандарта в части размеров и количества пор (п. 3.12), выявленных в металле шва или наплавленном металле при проверке сварочно-технологических свойств, допускается повторное прокаливание всех электродов контролируемой партии с последующей проверкой соответствующих показателей.
При получении неудовлетворительных результатов проверки по п. 4.8 стандарта в части химического состава наплавленного металла, механических и специальных свойств и характеристик металла шва, наплавленного металла или сварного соединения допускается повторное выполнение соответствующих проб и удвоенного числа образцов для проверки показателей, по которым был получен неудовлетворительный результат.
Результаты повторной проверки являются окончательными.
Прокалка сварочных электродов
Прокалка производится для уменьшения содержания влаги в покрытии и, как следствие, снижения количества водорода в наплавленном металле, а так же для улучшения сварочно-технологических свойств .
Режим прокалки указывается на этикетке (коробке)
Режим прокалки включает: температуру прокалки, время выдержки. Температура прокалки электродов с основным видом покрытия должна быть не менее 340 С
Срок хранения прокаленных электродов в обычных условиях (температура не ниже +15С и влажность не более 60%) не более 5 суток, в термо шкафах при температуре 80-115 С срок хранения не ограничен.
Количество прокалок не более 3-х раз.
Нарушение режимов прокалки и сроков хранения приведет к появлению пор и снижению ударной вязкости металла сварных швов.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
ИССЛЕДОВАНИЕ СВАРОЧНО-ТЕХНОЛОГИЧЕСКИХ СВОЙСТВ ПОКРЫТЫХ ЭЛЕКТРОДОВ ДЛЯ СВАРКИ НИЗКОЛЕГИРОВАННЫХ ВЫСОКОПРОЧНЫХ СТАЛЕЙ
Литвинова Т.Р. 1 , Елсуков С.К. 2 , Антипов И.С. 3 , Королев М.П. 4 , Прияткин Д.В. 5 , Бессонов О.В. 6 , Егоров И.В. 7
1 Аспирант, инженер, 2 младший научный сотрудник, аспирант, 3 студент, 4 студент, 5 студент, 6 студент, 7 студент, ФГБОУ ВО Волгоградский государственный технический университет
ИССЛЕДОВАНИЕ СВАРОЧНО-ТЕХНОЛОГИЧЕСКИХ СВОЙСТВ ПОКРЫТЫХ ЭЛЕКТРОДОВ ДЛЯ СВАРКИ НИЗКОЛЕГИРОВАННЫХ ВЫСОКОПРОЧНЫХ СТАЛЕЙ
Аннотация
Проведен сравнительный анализ химического состава металла, механических свойств сварных соединений, выполненных различными электродами марки УОНИ 13/55 отечественного и зарубежного производства с целью выявления электродов, обеспечивающих гарантированные механические свойства сварных соединений при рабочих температурах до -70◦С. К тому же, проведены металлографические исследования зоны термического влияния.
Ключевые слова: покрытый электрод, низколегированные высокопрочные стали, хладостойкость, зона термического влияния.
Litvinova T.R. 1 , Elsukov S.K. 2 , Antipov I.S. 3 , Korolev M.P. 4 , Prijatkin D.V. 5 , Bessonov O.V. 6 , Egorov I.V. 7
1 Postgraduate student, engineer, 2 Junior research scientist, postgraduate student, 3 Student, 4 Student, 5 Student, 6 Student, 7 Student, Volgograd State Technical university
INVESTIGATION OF WELDING AND TECHNOLOGICAL PROPERTIES OF COATED ELECTRODES OF LOW-ALLOY HIGH-STRENGTH STEELS
Abstract
The paper contains comparative analysis of the chemical composition of the metal and the mechanical properties of welded joints made with various electrodes of the SSSI 13/55 brand of domestic and foreign production. Its aim is to identify electrodes providing guaranteed mechanical properties of welded joints at operating temperatures down to -70 ° C. In addition, metallographic studies of the zone of thermal influence were carried out.
Keywords: coated electrode, low-alloy high-strength steel, cold resistance, heat-affected zone.
Введение
Для производства сварных металлических конструкций, предназначенных для эксплуатации в северных районах РФ и на Арктическом шельфе актуально использовать высококачественные сварочные покрытые электроды отечественного производства, не уступающие по свойствам дорогостоящим электродам, поставляемых по импорту.
Номенклатура, качество электродов различных производителей в РФ, а также механические свойства сварных соединений, полученных с их использованием, существенно различаются, хотя в рекламных изданиях их характеристики почти всегда соответствуют действующим стандартам.
Цель настоящего исследования – выявить оптимальные марки электродов, которые обеспечивали бы гарантированные свойства сварных соединений при рабочих температурах до -70◦С.
Материалы и методы исследований.
Марка сварочные электроды УОНИ 13/55 предназначена для сварки особо ответственных конструкций из углеродистых и низколегированных сталей, когда к металлу швов предъявляют повышенные требования по пластичности и ударной вязкости. Допускается сварка электродами УОНИ 13/55 во всех пространственных положениях шва постоянным током обратной полярности. Наплавленный металл характеризуется высокой стойкостью к образованию кристаллизационных трещин и низким содержанием водорода. Электроды склонны к образованию пор при сварке по окисленным поверхностям и удлинении дуги.
Исследовали пять марок электродов различных производителей, в качестве контрольного образца использовали электроды фирмы ESAB (Швеция), выпускаемые в РФ под российским брендом – УОНИ 13/55.
Для изготовления сварных образцов использовали сталь марки 12Х2НВФА, толщина стандартных образцов для механических испытания составляла 6 мм. Перед сваркой электроды прокаливали при температуре 350-400◦С в течение 1,5 часов. В качестве источника сварочного тока использовали инверторный сварочный аппарат KEMPPI MASTER MLS-3500. Постоянный сварочный ток – 100 А, полярность – обратная. Положение сварки – нижнее. Оценку сварочных свойств электродов проводили по пятибалльной системе.
Химический состав металла сварных швов, полученных с использованием различных экспериментальных электродов и электрода фирмы ESAB под условными номерами представлены в таблице 1.
Таблица 1 – Химический состав металла сварных швов
Испытания проводили согласно действующим в РФ стандартам. Твердость металла сварного соединения контролировали методом Роквелла с использованием прибор для измерения твердости ТР 5014 по ГОСТ 9013-59. Ударную вязкость сварных образцов при отрицательных температурах определяли по ГОСТ 9454-78 на маятниковом копре ИО 5003-0,3-1 в криокамере модели ККМ-1М. Предел текучести и предел прочности сварных соединений измеряли на универсальной испытательной машине Zwick Z250. Структуру, морфологию и элементный состав наплавленного металла изучали с использованием инвертированного микроскопа Axiovert 40 MAT, оснащенного устройством для определения химического состава металла -оптико-эмиссионного спектрометра ARL 3460.
Результаты и их обсуждение.
Сварочно-технологические свойства исследованных электродов, представленны в таблице 2.
Таблица 2 – Сварочно-технологические свойства электродов
Из таблицы 1 видно, что выбранный для сравнительной оценки массово используемый в РФ электрод фирмы ESAB обеспечивает металл сварного шва с повышенным содержанием марганца и содержит минимальное количество серы. Это дает возможность в сочетании с отличными сварочными свойствами (табл. 2) получить повышенные прочностные характеристики металла сварного шва (рис. 1-3).
Рис. 1 – Диаграмма значений ударной вязкости при температуре сварных швов, выполненных электродами: 1 – 5 (табл. 1 и 2)
По результатам испытаний сварных швов на ударную вязкость при температуре -70ºС (рис. 1), лучший результат показали электрод фирмы ESAB (позиция 2) и электрод (позиция 1), так как в наплавленном ими металле содержится минимальное количество вольфрама (0,145% и 0,159% соответственно). Повышенное содержание вольфрама в металле, наплавленном электродом (позиция 4), оказало негативный эффект на значение его ударной вязкости (рис. 1), но в то же время это способствовало увеличению прочностных характеристик (рис. 3).
Хотя введение вольфрама в стали и способствует их дисперсионному твердению в результате термической обработки (отпуска), но при увеличении его содержания в металле ухудшаются показатели его пластичности, особенно ударной вязкости при отрицательной температуре [3].
Рис. 2 – Диаграмма значений относительного удлинения δ сварных швов, выполненных электродами: 1 – 5 (табл. 1 и 2)
Рис. 3 – Диаграмма значений предела текучести σт и предела прочности σв сварного шва, наплавленного электродами №1-5
Рис. 4 – Распределение твердости в металле переходной зоны
Рис. 5 – Микроструктуры металла переходных зон сварных соединений при увеличении х200, выполненных с использованием электродов №1-5 (табл. 1)
Исследование топологии твердости (рис. 4) и структуры металла сварных соединений (рис. 5) показывает, что неоднородность его свойств в переходной зоне термического влияния довольно высокая. Так же наблюдается резкое изменение твердости металла у образцов позиции 1 и 2 Это характерно почти для всех типов сварных образцов, что обусловливает необходимость проведения после сварки термической обработки в виде отпуска для выравнивания свойств металла в зоне термического влияния [2, 3].
Анализируя результаты металлографических исследований, можно констатировать, что по механическим свойствам металла сварных швов отечественные аналоги лишь в некоторых случаях (поз. 3 и 4, табл. 1, 2) уступают свойствам металла электродов фирмы ESAB. Некоторое уменьшение относительного удлинения металла шва, полученного сваркой электродом поз. 1 можно объяснить повышенным содержанием неметаллических соединений алюмосиликатного происхождения. Однако, они мелкодисперсные и распределены однородно, что не влияет на величину ударной вязкости при отрицательной температуре. Снижение работы удара при -70◦С для металлов (поз. 3 и 4) обусловлено наличием крупных неметаллических соединений кубоидной формы (поз. 3) и повышенного (до 0,4 масс. %) содержания вольфрама (поз. 4).
Заключение
Промышленные испытания на технологической базе ФНПЦ «Титан-Баррикады» (г. Волгоград) сварочно-технологических свойств, сваренных образцов экспериментальными электродами и электродами, которые массово применяются в машиностроении РФ показали, что качество и механические свойства сварных соединений не уступают и находятся на одном уровне с образцами отечественных и зарубежных аналогов.
Список литературы / References
- Электроды для сварки низколегированных термообрабатываемых сталей, эксплуатируемых при отрицательных температурах / Ю. М. Нягай, О. С. Каковкин, Д. В. Витман, Ю. В. Сванидзе // Сварочное производство. – 1991. №6. – С. 23-25.
- Кривононосова Е. А. Структура и хладостойкость низкоуглеродистых сварных швов / Е.А. Кривоносова // Сварка и диагностика. – 2014. – №4. – С. 11-13.
- Лившиц Л. С. Металловедение и термическая обработка сварных соединений / Л. С. Лившиц, А. Н. Хакимов – М. : Машиностроение. – 1989. – 336 с.
Список литературы на английском языке / References in English