Milling-master.ru

В помощь хозяину
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Купить чпу станок по дереву самодельный

Станки с ЧПУ — Для дерева

Разрешение позиционирования: 0.01 мм
Повторяемость: 0.05 мм на 150мм
Скорость перемещения: 1500 мм/мин
Скорость перемещения (модификация S): 2000 мм/мин
Рабочая поверхность стола: Алюминий
Крепление заготовки: Т-ПАЗ
Двигатели: 57HS76 (18 кг/с)
Вес станка: 24кг

Разрешение позиционирования: 0.01 мм
Повторяемость: 0.05 мм на 150 мм
Скорость перемещения: 1500 мм/мин
Скорость перемещения (модификация S): 2000 мм/мин
Рабочая поверхность стола: Алюминий
Крепление заготовки: Т-ПАЗ
Двигатели: 57HS76 (18 кг/с)
Вес станка: 40 кг

Разрешение позиционирования: 0.01 мм
Повторяемость: 0.05 мм на 150 мм
Скорость перемещения: 1500 мм/мин
Скорость перемещения (модификация S): 2000 мм/мин
Рабочая поверхность стола: Алюминий
Крепление заготовки: Т-ПАЗ
Двигатели: 57HS76 (18 кг/с)
Вес станка: 29 кг
Шпиндель: Без шпинделя

Разрешение позиционирования: 0.01 мм
Повторяемость: 0.05 мм на 150 мм
Скорость перемещения: 1500 мм/мин
Скорость перемещения (модификация S): 2000 мм/мин
Рабочая поверхность стола: Алюминий
Крепление заготовки: Т-ПАЗ
Двигатели: 57HS76 (18 кг/с)
Вес станка: 35 кг

Разрешение позиционирования: 0.01 мм
Повторяемость: 0.05 мм на 150 мм
Скорость перемещения: 1500 мм/мин
Скорость перемещения (модификация S): 2000 мм/мин
Рабочая поверхность стола: Алюминий
Крепление заготовки: Т-ПАЗ
Двигатели: 57HS76 (18 кг/с)
Вес станка: кг

Разрешение позиционирования: 0.01 мм
Повторяемость: 0.05 мм на 150 мм
Скорость перемещения: 1500 мм/мин
Скорость перемещения (модификация S): 2000 мм/мин
Рабочая поверхность стола: Алюминий
Крепление заготовки: Т-ПАЗ
Двигатели: 57HS76 (18 кг/с)
Вес станка: кг

Разрешение позиционирования: 0.05 мм
Повторяемость: 0.1 мм на 150 мм
Скорость перемещения: 7500 мм/мин
Рабочая поверхность стола: МДФ
Крепление заготовки: Т-ПАЗ
Двигатели: 57HS76 (18 кг/с)
Вес станка: 40 кг.

Разрешение позиционирования: 0.05 мм
Повторяемость: 0.1 мм на 150 мм
Скорость перемещения: 7500 мм/мин
Рабочая поверхность стола: МДФ
Крепление заготовки: Т-ПАЗ
Двигатели: 57HS76 (18 кг/с)
Вес станка: 50 кг

Разрешение позиционирования: 0.05 мм
Повторяемость: 0.1 мм на 150 мм
Скорость перемещения: 7500 мм/мин
Рабочая поверхность стола: МДФ
Крепление заготовки: Т-ПАЗ
Двигатели: 57HS76 (18 кг/с)
Вес станка: 70 кг

Разрешение позиционирования: 0.05 мм
Повторяемость: 0.1 мм на 150 мм
Скорость перемещения: 7500 мм/мин
Рабочая поверхность стола: Алюминий
Крепление заготовки: Т-ПАЗ
Двигатели: 57HS76 (18 кг/с)
Вес станка: 90 кг

Разрешение позиционирования: 0.05 мм
Повторяемость: 0.1 мм на 150 мм
Скорость перемещения: 7500 мм/мин
Рабочая поверхность стола: МДФ
Крепление заготовки: Т-ПАЗ
Двигатели: 57HS76 (18 кг/с)
Вес станка: 130 кг

Рабочее поле: 2500x800x150 мм
Разрешение позиционирования: 0.05 мм
Повторяемость: 0.1 мм на 150 мм
Скорость перемещения: 7500 мм/мин
Рабочая поверхность стола: МДФ
Крепление заготовки: Т-ПАЗ
Двигатели: 57HS76 (18 кг/с)
Вес станка: 130 кг

Разрешение позиционирования: 0.03 мм
Повторяемость: 0.06 мм на 150 мм
Скорость перемещения: до 20 000 мм/мин
Рабочая поверхность стола: Алюминий
Крепление заготовки: Т-ПАЗ
Сервошаговые двигатели 57: с энкодерами (2 H)
Редуктор: PX
Шпиндель: 1500в
Вес станка: 90 кг.

Разрешение позиционирования: 0.03 мм
Повторяемость: 0.06 мм на 150 мм
Скорость перемещения: до 20 000 мм/мин
Рабочая поверхность стола: Алюминий
Крепление заготовки: Т-ПАЗ
Сервошаговые двигатели 57: с энкодерами (2 H)
Редуктор: PX
Шпиндель: 2200в
Вес станка: 130 кг

Рабочее поле: 1300x800x110
Разрешение позиционирования: 0.03 мм
Повторяемость: 0.06 мм на 150 мм
Скорость перемещения: до 25 000 мм/мин
Рабочая поверхность стола: Алюминий
Крепление заготовки: Т-ПАЗ
Сервошаговые двигатели 57: с энкодерами (2 Hm)
Редуктор:: PX (1:10)
Шпиндель: : 1500
Вес станка: 140 кг

Рабочее поле:: 1600х1600х150
Разрешение позиционирования: 0.05 мм
Повторяемость: 0.1 мм мм на 150 мм
Скорость перемещения: 7500 мм/мин
Рабочая поверхность стола: МДФ
Крепление заготовки: Т-ПАЗ
Двигатели: 57HS76 (18 кг/с)
Вес станка: 150 кг

Разрешение позиционирования: 0.01 мм
Повторяемость: 0.05 мм на 150 мм
Скорость перемещения: 1500 мм/мин
Скорость перемещения (модификация S): 2000 мм/мин
Рабочая поверхность стола: Алюминий
Крепление заготовки: Т-ПАЗ
Двигатели: 57HS76 (18 кг/с)
Вес станка: кг

Наша компания под брендом «Cutmaster» с 2009 года разрабатывает и производит в России фрезерно-гравировальные станки с ЧПУ, а так же аксессуары к ним. Мы имеем большой опыт проектировки и производства как серийных моделей, так и не стандартного оборудования. Наша продукция уже хорошо зарекомендовала себя на российском рынке и рынках стран СНГ.

Простой и недорогой 3-х осевой станок с ЧПУ своими руками

Целью этого проекта является создание настольного станка с ЧПУ. Можно было купить готовый станок, но его цена и размеры меня не устроили, и я решил построить станок с ЧПУ с такими требованиями:
— использование простых инструментов (нужен только сверлильный станок, ленточная пила и ручной инструмент)
— низкая стоимость (я ориентировался на низкую стоимость, но всё равно купил элементов примерно на $600, можно значительно сэкономить, покупая элементы в соответствующих магазинах)
— малая занимаемая площадь(30″х25″)
— нормальное рабочее пространство (10″ по оси X, 14″ по оси Y, 4″ по оси Z)
— высокая скорость резки (60″ за минуту)
— малое количество элементов (менее 30 уникальных)
— доступные элементы (все элементы можно купить в одном хозяйственном и трех online магазинах)
— возможность успешной обработки фанеры

Станки других людей

Вот несколько фото других станков, собравших по данной статье

Фото 1 – Chris с другом собрал станок, вырезав детали из 0,5″ акрила при помощи лазерной резки. Но все, кто работал с акрилом знают, что лазерная резка это хорошо, но акрил плохо переносит сверление, а в этом проекте есть много отверстий. Они сделали хорошую работу, больше информации можно найти в блоге Chris’a. Мне особенно понравилось изготовление 3D объекта при помощи 2D резов.

Фото 2 — Sam McCaskill сделал действительно хороший настольный станок с ЧПУ. Меня впечатлило то, что он не стал упрощать свою работу и вырезал все элементы вручную. Я впечатлён этим проектом.

Читать еще:  4 х сторонний станок по дереву

Фото 3 — Angry Monk’s использовал детали из ДМФ, вырезанные при помощи лазерного резака и двигатели с зубчато-ремённой передачей, переделанные в двигатели с винтом.

Фото 4 — Bret Golab’s собрал станок и настроил его для работы с Linux CNC (я тоже пытался сделать это, но не смог из-за сложности). Если вы заинтересованы его настройками, вы можете связаться с ним. Он сделал великую работу!

Характеристики станка

Боюсь что у меня недостаточно опыта и знаний, чтобы объяснять основы ЧПУ, но на форуме сайта CNCZone.com есть обширный раздел, посвященный самодельным станкам, который очень помог мне.

Резак: Dremel или Dremel Type Tool

Параметры осей:

Ось X
Расстояние перемещения: 14″
Привод: Зубчато-ременная передача
Скорость: 60″/мин
Ускорение: 1″/с2
Разрешение: 1/2000″
Импульсов на дюйм: 2001

Ось Y
Расстояние перемещения: 10″
Привод: Зубчато-ременная передача
Скорость: 60″/мин
Ускорение: 1″/с2
Разрешение: 1/2000″
Импульсов на дюйм: 2001

Ось Z (вверх-вниз)
Расстояние перемещения: 4 »
Привод: Винт
Ускорение: .2″/с2
Скорость: 12″/мин
Разрешение: 1/8000 »
Импульсов на дюйм: 8000

Необходимые инструменты

Я стремился использовать популярные инструменты, которые можно приобрести в обычном магазине для мастеров.

Электроинструмент:
— ленточная пила или лобзик
— сверлильный станок (сверла 1/4″, 5/16″, 7/16″, 5/8″, 7/8″, 8мм (около 5/16″)), также называется Q
— принтер
— Dremel или аналогичный инструмент (для установки в готовый станок).

Ручной инструмент:
— резиновый молоток (для посадки элементов на места)
— шестигранники (5/64″, 1/16″)
— отвертка
— клеевой карандаш или аэрозольный клей
— разводной ключ (или торцевой ключ с трещоткой и головкой 7/16″)

Необходимые материалы

В прилагаемом PDF файле (CNC-Part-Summary.pdf) предоставлены все затраты и информация о каждом элементе. Здесь предоставлена только обобщенная информация.

Листы — $ 20
-Кусок 48″х48″ 1/2″ МДФ (подойдет любой листовой материал толщиной 1/2″ Я планирую использовать UHMW в следующей версии станка, но сейчас это выходит слишком дорого)
-Кусок 5″x5″ 3/4″ МДФ (этот кусок используется в качестве распорки, поэтому можете брать кусок любого материала 3/4″)

Двигатели и контроллеры — $ 255
-О выборе контроллеров и двигателей можно написать целую статью. Коротко говоря, необходим контроллер, способный управлять тремя двигателями и двигатели с крутящим моментом около 100 oz/in. Я купил двигатели и готовый контроллер, и всё работало хорошо.

Аппаратная часть — $ 275
-Я купил эти элементы в трех магазинах. Простые элементы я приобрёл в хозяйственном магазине, специализированные драйвера я купил на McMaster Carr (http://www.mcmaster.com), а подшипники, которых надо много, я купил у интернет-продавца, заплатив $40 за 100 штук (получается довольно выгодно, много подшипников остается для других проектов).

Программное обеспечение — (бесплатно)
-Необходима программа чтобы нарисовать вашу конструкцию (я использую CorelDraw), и сейчас я использую пробную версию Mach3, но у меня есть планы по переходу на LinuxCNC (открытый контролер станка, использующий Linux)

Головное устройство — (дополнительно)
-Я установил Dremel на свой станок, но если вы интересуетесь 3D печатью (например RepRap) вы можете установить свое устройство.

Печать шаблонов

У меня был некоторый опыт работы лобзиком, поэтому я решил приклеить шаблоны. Необходимо распечатать PDF файлы с шаблонами, размещенными на листе, наклеить лист на материал и вырезать детали.

Имя файла и материал:
Всё: CNC-Cut-Summary.pdf
0,5″ МДФ (35 8.5″x11″ листов с шаблонами): CNC-0.5MDF-CutLayout-(Rev3).pdf
0,75″ МДФ: CNC-0.75MDF-CutLayout-(Rev2).pdf
0,75″ алюминиевая трубка: CNC-0.75Alum-CutLayout-(Rev3).pdf
0,5 «MDF (1 48″x48» лист с шаблонами): CNC-(One 48×48 Page) 05-MDF-CutPattern.pdf

Примечание: Я прилагаю рисунки CorelDraw в оригинальном формате (CNC-CorelDrawFormat-CutPatterns (Rev2) ZIP) для тех, кто хотел бы что то изменить.

Примечание: Есть два варианта файлов для МДФ 0,5″. Можно скачать файл с 35 страницами 8.5″х11″ (CNC-0.5MDF-CutLayout-(Rev3), PDF), или файл (CNC-(Один 48×48 Page) 05-MDF-CutPattern.pdf) с одним листом 48″x48″для печати на широкоформатном принтере.

Шаг за шагом:
1. Скачайте три PDF-файла с шаблонами.
2. Откройте каждый файл в Adobe Reader
3. Откройте окно печати
4. (ВАЖНО) отключите Масштабирование страниц.
5. Проверьте, что файл случайно не масштабировался. Первый раз я не сделал это, и распечатал всё в масштабе 90%, о чем сказано ниже.

Наклеивание и выпиливание элементов

Приклейте распечатаные шаблоны на МДФ и на алюминиевую трубу. Далее, просто вырезайте деталь по контуру.

Как было сказано выше, я случайно распечатал шаблоны в масштабе 90%, и не заметил этого до начала выпиливания. К сожалению, я не понимал этого до этой стадии. Я остался с шаблонами в масштабе 90% и, переехав через всю страну, я получил доступ к полноразмерному ЧПУ. Я не выдержал и вырезал элементы при помощи этого станка, но не смог просверлить их с обратной стороны. Именно поэтому все элементы на фотографиях без кусков шаблона.

Сверление

Я не считал сколько именно, но в этом проекте используется много отверстий. Отверстия, которые сверлятся на торцах особенно важны, но не пожалейте времени на них, и использовать резиновый молоток вам придется крайне редко.

Места с отверстиями в накладку друг на друга это попытка сделать канавки. Возможно, у вас есть станок с ЧПУ, на котором это можно сделать лучше.

Сборка

Если вы дошли до этого шага, то я поздравляю вас! Глядя на кучу элементов, довольно сложно представить, как собрать станок, поэтому я постарался сделать подробные инструкции, похожие на инструкции к LEGO. (прилагаемый PDF CNC-Assembly-Instructions.pdf). Довольно интересно выглядят пошаговые фотографии сборки.

Готово!

Станок готов! Надеюсь, вы сделали и запустили его. Я надеюсь, что в статье не упущены важные детали и моменты. Вот видео, в котором показано вырезание станком узора на розовом пенопласте.

Фрезерные станки с ЧПУ

Фрезерные станки большого формата

Фрезерные станки среднего формата

Фрезерные станки для металлообработки

Настольные 3D Фрезерные и Гравировальные станки

Станки для производства корпусной мебели

Станки для обработки камня

615 595 руб. цена с НДС

Читать еще:  Строгальный станок по дереву видео

483 977 руб. цена с НДС

509 139 руб. цена с НДС

309 186 руб. цена с НДС

1 053 598 руб. цена с НДС

419 488 руб. цена с НДС

438 999 руб. цена с НДС

458 510 руб. цена с НДС

478 021 руб. цена с НДС

1 190 176 руб. цена с НДС

195 111 руб. цена с НДС

917 021 руб. цена с НДС

507 288 руб. цена с НДС

507 288 руб. цена с НДС

546 310 руб. цена с НДС

604 843 руб. цена с НДС

702 399 руб. цена с НДС

176 813 руб. цена с НДС

1 034 087 руб. цена с НДС

682 888 руб. цена с НДС

721 910 руб. цена с НДС

663 377 руб. цена с НДС

917 021 руб. цена с НДС

241 937 руб. цена с НДС

682 888 руб. цена с НДС

799 954 руб. цена с НДС

188 000 руб. цена с НДС

273 155 руб. цена с НДС

370 000 руб. цена с НДС

585 332 руб. цена с НДС

663 377 руб. цена с НДС

Компания «Форсайн» поставляет на российский рынок широкий модельный ряд современных фрезерных и гравировальных станков с ЧПУ в разнообразии технико-эксплуатационных параметров. Ассортимент включает станки производства AMAN, Comagrav, Flexicam, Gravograph, Mectronic, ProPen, Roland, SICONO и X-CUT. У нас вы можете купить станки с ЧПУ для трехмерной обработки абсолютно всех материалов, вплоть до металла — от настольных моделей до габаритных промышленных установок. Широкий функционал фрезерных станков позволяет использовать их в различных сферах: ювелирном деле, производстве клише, литьевых форм, пломбиров, сувенирной и наградной продукции, гравировке на стеклянных, цилиндрических, крупногабаритных изделиях, маркировке и пр. Выгодные цены, фирменная гарантия, профессиональное техническое обслуживание!

Фрезерный станок с ЧПУ своими руками. Часть 1.

Сегодня я расскажу о самом большом на сегодняшний день моем проекте. Это сборка фрезерного станка с ЧПУ. В процессе работы были испытания, ошибки и их исправления, но как говорят «из песни слов не выбросишь» — описание ошибок наглядно объясняет причину конструктивных решений. Даже в кратком изложении текст получился очень длинный, поэтому я разбил статью на 3 части.

Нужен ли вообще в домашней мастерской деревообрабатывающий станок с ЧПУ? Вопрос спорный. Мастера скажут, что все можно сделать и руками, причем изделие будет нести свою энергетику, станет неповторимо и т. п. Возможно они будут правы, но на дворе 21 век и никуда от компьютерных технологий уже не деться. Даже эту статью не получилось бы сейчас читать, если не было бы компьютера или планшета/смартфона. Свой станок я собрал 2 года назад и могу сказать, что у меня стало больше возможностей, а многие детали изготовлять получается гораздо проще и точнее, особенно, если требуются абсолютно одинаковые. Вот небольшие примеры.

Например, фоторамку из фанеры 10мм и размером 60*90см было бы проблематично сделать из цельного куска фанеры без моего станка. Изготовление «барашков», гнезд под гайки, различные круги без центрального отверстия – работа не сложная, но требует времени. Теперь это все делается только на станке.

Сейчас предлагается огромное количество различных готовых станков, но стоимость их для хобби часто недоступна, хотя цена бывает вполне обоснована. Для меня был в первую очередь интересен сам процесс разработки и сборки станка, а уж потом перспективы его применения и возможности хотя бы вернуть потраченные деньги. Перед началом сборки я перечитал огромное количество статей в интернете, насмотрелся до тошноты фотографий готовых станков и с удивлением понял, что внятной инструкции нигде нет. Часто предложены готовые чертежи, что меня не устраивало или общее описание теории. Поэтому попытаюсь изложить ту информацию, которую удалось собрать и которой я в последствии руководствовался. К сожалению, статья тоже не раскрывает многие детали, так как информации очень много – по некоторым вопросам я хочу написать отдельные статьи.

Возможно многим это будет не интересно, так как информации слишком много, тогда при желании можно просто посмотреть картинки.

Сначала немного теории – только основные моменты . Все 3D станки имеют одно общее решение. Есть 3 оси по которым может двигаться обрабатывающий инструмент по нужной траектории. В зависимости от инструмента (фреза, лазер, нож, экструдер, карандаш и т.д.) можно получить разные по функционалу станки. Так как места в моей мастерской не много, я решил сделать универсальную станину на разные инструменты. Изначально рассчитывалось рабочее поле 600х900мм с ходом по вертикали 250мм, но реально получилось чуть меньше. За основу была взята конструкция фрезерно-гравировального станка.

Существует основные 2 конструкции:

1. С подвижным столом и неподвижным порталом;

2. С подвижным порталом и стационарным столом.

Первый вариант более прост конструктивно, но рассчитан только на небольшие по площади столы, второй наиболее распространен, причем эта конструкция различается по типу привода: с одним приводом по центру или двумя по бокам.

Два привода используются также в более громоздких конструкциях, так как меньше вариантов перекоса портала на направляющих из-за неравномерного скольжения по ним и при этом портал имеет большую жесткость.

В первую очередь нужно определиться с максимальными размерами рабочей области. Она зависит от предполагаемых задач. Нужно помнить, чем меньше станок, тем он получается бюджетнее. Нет смысла замахиваться сразу на большие размеры. Исправление ошибок в конструкции также обходятся дешевле на маленьких станках. Многие, кто собирал самодельные ЧПУ станки начинали с малых конструкций, а уже с помощью них делали более мощные модели.

Читать еще:  Комбинированный деревообрабатывающий станок woodtec master 250 new

Я буду рассматривать конструкцию с мобильным козловым порталом и стационарным столом. Для начала определимся с системой координат. Она стандартная – три оси X Y Z. Ось Х перемещает фрезер по порталу влево-вправо и она параллельна к торцу станка. Ось Y перемещает портал вперед-назад вдоль длинной стороны стола. Ось Z перемещает фрезер вверх-вниз.

Форма портала, соотношения расстояний между осями и направляющими, расстояние между подшипниками требует отдельной статьи — там много физики, сапромата, механики и возможно будет моя отдельная статья. Я перечислю только конечные выводы, которыми желательно пользоваться при проектировании конструкции (данные советы актуальны для фрезерного станка, для лазера конструкция может быть значительно легче и проще):

— минимизировать расстояние по вертикали между направляющими оси Y и нижней направляющей оси X, то есть чем меньше зазор над столом, тем жестче конструкция. В некоторых станках проектировщики специально поднимают рельсы оси Y выше над столом, чтобы увеличить толщину заготовки, но сократить это расстояние;

— направляющие оси Z должны быть максимально жесткими и не очень длинными, чтобы избежать прогиба и биения при движении фрезы в заготовке;

— стараться максимально увеличить расстояние между направляющими оси Х, это снизит кручение;

— желательно определить центр тяжести портала и выбрать такую форму боковых опор, чтобы он попадал в точку размещения фрезы и при этом находился между передним и задним подшипниками оси Y. Поэтому вертикальные стойки часто имеют изогнутую назад форму. В своем станке я определял примерный центр тяжести экспериментально и об этом расскажу ниже.

Есть еще несколько моментов, но я их сразу не учел и это привело к необходимости изменения конструкции. О них я подробно расскажу в процессе описания сборки как собственные ошибки, поэтому советую дочитать статью до конца.

Кроме этого, обязательно при сборке станка нужно добиться максимальной жесткости соединений. Любые люфты приводят к потере как точности (инструмент будет двигаться не по нужной траектории), так и повторяемости (траектория правильная, но второй проход может быть смещен относительно первого).

Выбор материала. Как и многие самоделки, свой первый вариант я начал делать из фанеры. Это значительно дешевле алюминия и проще в сборке, тем более что нужно прочувствовать конструкцию и выявить ее недостатки. В качестве направляющих я брал рельсы и стержни из полированной нержавейки. Это достаточно не дешевый вариант, но наиболее долговечный и жесткий конструктивно (цена-качество для меня была наиболее оптимальное).

Приводные винты – ШВП. Это на сегодня самый дорогой вариант. Можно делать привод используя обычную строительную шпильку, зубчатые ремни, шпильку с трапецеидальной резьбой, велосипедные цепи, тросы и т.д. Все они имеют люфты, с которыми придется бороться, но в моем варианте они минимальны. Шаговые двигатели покупал специализированные. Часто бытует мнение, что можно взять двигатели от матричных или лазерных принтеров. Я имею отношение к ремонту этого оборудования и могу сказать, что возможно они подойдут только для привода с зубчатым ремнем и на небольшие станочки, так как слабые по моменту сил и имеют огромный угол поворота за один шаг. ШВП у меня перемешает гайку за один оборот на 5мм. Если у двигателя угол 12 градусов, то за один шаг будет 1мм – это максимальная точность, поэтому использовать их не получится.

Для удешевления конструкции использовал обычные подшипники, а все фланцы и кронштейны делал фанерными. По опыту других конструкций могу сказать, что на небольших оборотах, где нет сильного нагрева подшипников они ничем не хуже и если плотно запрессовать подшипник, то вынуть его удастся только распилив деталь. Существует несколько способов установки подшипников на винт. Я использовал вариант, когда винт имеет 2 независимых подшипника на концах и крепится к двигателю на гибкой муфте. Это было среднее по простоте-качеству соединение. Можно купить готовые наборы со всеми крепежами и подшипниками для ШВП – работы заметно убавится, но расходы тоже существенно возрастут и опять же – ремонт будет возможен только заменой детали, а фанерную можно вырезать заново и быстро.

Сборку всех основных деталей решил делать на ящичных шипах. Такого я нигде не видел и считаю собственным изобретением, так как мне очень не нравились конструкции скрепленные с помощью болтов и ощетинившиеся гайками как броненосец «Потемкин». Для нарезки шипа использовал свою самодельную ящичную шипорезку .

Сборку станка начал с вертикальной оси Z как самой маленькой, но на которой можно было отработать все детали. Начал со сборки ШВП. Гайки и винты продаются как отдельно, так и в сборе. Я брал отдельно, так как не смог подобрать нужные по длине готовые винты. Кроме этого, заводская проточка рассчитана на фирменные подшипники и крепеж, который сложно заменить на обычный. Минусом такого выбора является необходимость самостоятельно обтачивать винт. Я думал, что с этим справится любой токарь и оказался не прав. Получилось только со второго раза и далеко не так идеально как я рассчитывал, но это другая история. После токарной обработки нужно надеть гайку на винт – это очень ответственная операция и любая ошибка может привести к высыпанию шариков. Поэтому советую собирать над емкостью, чтобы шарики не потерялись. Если гайка рассыпалась – это конечно печально, но не смертельно – ее можно собрать, хоть и не просто. У меня уже есть по этому поводу опыт.

Наконец винты в сборе и на гайку вырезал я крепежный блок. С первого раза он не получился, так как сложно было определить его высоту. Это уже окончательный вариант. После этого собрал весь модуль оси Z. Длина направляющих больше винта. Это для экономии.

Ссылка на основную публикацию
Adblock
detector