Milling-master.ru

В помощь хозяину
414 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Технология производства металлов и сплавов

Способы производства металлов и сплавов;

Металлы и сплавы получают различными способами. Чаще всего используют пирометаллургический (от греч. «пиро» — огонь и металлургия).

1. Пирометаллургический способ. По этим способом производство металлов и сплавов основывается на использовании тепловой энергии, которая выделяется в процессе сгорания топлива или протекания химических реакций в сырье. Во время сгорания топлива выделяется тепловая энергия и образуется CO. Тепловую энергию используют для разогрева и расплавление сырья, a CO — для восстановления металлов из их соединений (оксидов). Пирометаллургическим способом получают чугуны в доменных печах, стали в мартеновских печах и т.д.

2. Электрометаллургический способ. В процессе электрометаллургического способа металлы и сплавы получают в дуговых, индукционных и других типах электрических печей. В электрических печах сырье нагревают до более высоких температур, чем в ходе пирометаллургического способа. Сырье плавится очень быстро.

3. Плазменный способ. Суть плазменной металлургии заключается в том, что при температуре 10 000 С оксиды металла превращаются в плазму с определенной степенью ионизации. Поскольку энергия ионизации атомов металлов меньше энергии ионизации атомов кислорода, то в такой плазме атомы металла ионизируются, а атомы кислорода остаются нейтральными.

Из полученной смеси с помощью магнитного поля изымают ионы металла. В плазменных печах получают вольфрам, молибден, синтезируют карбид титана и др. Этот способ используют для получения очень качественных металлов и сплавов.

4. Химико-металлургический способ. Этот способ сочетает химические и металлургические процессы. Таким способом производят титан: из титановой руды получают четыреххлористый титан (ТіСІ4), который восстанавливают с помощью магния (Mg).

5. Гидрометаллургическим способом. При этом способе металлы из руд, концентратов и отходов производства изымают с помощью растворителей. Затем из этих растворов электролизом получают металлы. Так производят и рафинируют цветные металлы: медь, цинк, никель, кобальт, хром, серебро, золото и т.д.

Производство металлов гидрометаллургическим способом состоит из следующих стадий: подготовка руды к растворению; растворение руды и концентрата в растворителе; очистка полученного раствора от вредных для электролиза примесей; электролиз.

6. Порошковая металлургия. Этот способ объединяет процессы, в результате которых изготавливают порошки металлов и неметаллических соединений, из которых прессованием (для придания формы и размеров) с последующим спеканием изготавливают изделия (заготовки, детали и т.д.).

7. Космическая металлургия. Производство металлов и сплавов в космосе называют космической металлургией. Поскольку в космосе не действуют силы притяжения, то плавления металлов и сплавов проводят без тиглей. Под действием силы поверхностного натяжения расплав приобретает форму шара и свободно висит в пространстве. Используя электромагнитное поле, расплава можно предать произвольную форму.

В условиях космоса компоненты сплавов хорошо перемешиваются. В случае невесомости газы хорошо растворяются в расплавах, а после кристаллизации полученные сплавы имеют вид «губки» с равномерно распределенными ячейками заполненным газом. Такие сплавы называют металогазами. Эти сплавы чрезвычайно легкие, например сплав, который состоит из 87% газа и 13% стали, плавает на воде как пробковое дерево. Металогази очень перспективные для самолето — и ракетостроения, а также для космической техники.

Заслуживает внимания также технология получения волокнистых композиционных материалов и изделий литьем. По земным условиям получить качественные изделия из этих материалов невозможно.

Большие возможности открывает космическая металлургия для получения сверхчистых сплавов с равномерным (заранее заданным) распределением примесей, что важно в процессе производства полупроводниковых материалов. Полученные полупроводниковые материалы могут быть использованы также в процессе решения проблемы энергетики.

Кроме описанных способов получения металлов и сплавов существует электролучевой способ и другие.

Способы получения металлов и сплавов

Технология производства металлов и сплавов

Технология производства металлов и их сплавов называется металлургией. Металлургию подразделяют на черную – производство железа и его сплавов и цветную – производство остальных металлов

Сырьем для получения металлов служат руды. Рудами называют горные породы, которые технически возможно и экономически целесообразно перерабатывать для извлечения содержащихся в них металлов.

Как правило, производство металла происходит в два основных этапа:

Предварительная подготовка сырья.

В процессе предварительной подготовки сырья важной стадией является обогащение руды – удаление примеси пустой породы (например, кварца, полевого шпата и др.). После обогащения в руде увеличивается содержание полезного компонента.

— Чтобы очистить руду от пустой породы, используют физические методы разделения смесей веществ, основанные на различии свойств компонентов смеси. При обогащении железной руды магнетит (Fe3O4) отделяют от пустой породы с помощью магнита.

— Некоторые руды можно обогащать с помощью метода флотации, основанного на различии в смачиваемости полезного компонента руды и пустой породы.

— Многие металлы встречаются в природе в виде сульфидных руд. Тогда на первом этапе такое сырье подвергают обжигу. Например, при обжиге железного колчедана образуются оксид железа (II), который поступает на следующий этап производства, и диоксид серы: 4FeS2 + 11O2 = 2Fe2O3 + +8SO2

2. Восстановление самого металла из сырья.

На втором этапе проводят окислительно-восстановительную реакцию, в результате которой образуется металл. В качестве восстановителя используют уголь (кокс), монооксид углерода (СО) и водород. В некоторых случаях восстановление проводят путем электролиза.

Способы получения металлов и сплавов

Металлы и сплавы получают различными способами. (от греч. «пиро» — огонь и металлургия).

1. Пирометаллургический способ (от греч. «пиро» — огонь и металлургия). Этим способом производство металлов и сплавов основывается на использовании тепловой энергии, которая выделяется в процессе сгорания топлива или протекания химических реакций в сырье. Во время сгорания топлива выделяется тепловая энергия и образуется CO. Тепловую энергию используют для разогрева и расплавление сырья, a CO — для восстановления металлов из их соединений (оксидов). Пирометаллургическим способом получают чугуны в доменных печах, стали в мартеновских печах и т.д.

2. Электрометаллургический способ. В процессе электрометаллургического способа металлы и сплавы получают в дуговых, индукционных и других типах электрических печей. В электрических печах сырье нагревают до более высоких температур, чем в ходе пирометаллургического способа. Сырье плавится очень быстро.

Читать еще:  Фрезы для металлообработки

3. Плазменный способ. Суть плазменной металлургии заключается в том, что при температуре 10 000 С оксиды металла превращаются в плазму с определенной степенью ионизации. Поскольку энергия ионизации атомов металлов меньше энергии ионизации атомов кислорода, то в такой плазме атомы металла ионизируются, а атомы кислорода остаются нейтральными.

Из полученной смеси с помощью магнитного поля изымают ионы металла. В плазменных печах получают вольфрам, молибден, синтезируют карбид титана и др. Этот способ используют для получения очень качественных металлов и сплавов.

4. Химико-металлургический способ. Этот способ сочетает химические и металлургические процессы. Таким способом производят титан: из титановой руды получают четыреххлористый титан (ТіСІ4), который восстанавливают с помощью магния (Mg).

5. Гидрометаллургическим способом. При этом способе металлы из руд, концентратов и отходов производства изымают с помощью растворителей. Затем из этих растворов электролизом получают металлы. Так производят и рафинируют цветные металлы: медь, цинк, никель, кобальт, хром, серебро, золото и т.д.

Производство металлов гидрометаллургическим способом состоит из следующих стадий: подготовка руды к растворению; растворение руды и концентрата в растворителе; очистка полученного раствора от вредных для электролиза примесей; электролиз.

6. Порошковая металлургия. Этот способ объединяет процессы, в результате которых изготавливают порошки металлов и неметаллических соединений, из которых прессованием (для придания формы и размеров) с последующим спеканием изготавливают изделия (заготовки, детали и т.д.).

Черная металлургия

Черная металлургия долгое время содержала в себе два последовательных производства. Сначала из железной руды получали чугун, а затем из чугуна – сталь. Чугун производят в доменных печах. Восстановление железа осуществляется углеродом(C) и монооксидом (CO) углерода.

Выплавляемый металл насыщается углеродом и образуется сплав железа с углеродом – чугун. Большая часть произведенного чугуна используется на получение стали. Сталь содержит менее 2% углерода и существенно меньше, чем в чугуне, примесей серы, азота и фосфора. Поэтому необходимо выжечь углерод и примеси, а окисленное железо восстановить.

ПРОИЗВОДСТВО МЕТАЛЛОВ

Металлургией называют отрасль промышленности, производя­щую металлы из руд и другого сырья.

Все металлы делят на черные и цветные. К черным металлам относятся железо, марганец, хром и сплавы на их основе; к цвет­ным — все остальные. Цветные металлы делятся на четыре группы: 1) тяжелые: медь, свинец, олово, цинк и никель; 2) легкие: алю­миний, магний, кальций, щелочные и щелочноземельные; 3) дра­гоценные, или благородные: платина, иридий, осмий, палладий, рутений, родий, золото и серебро; 4) редкие (все остальные): а) тугоплавкие: вольфрам, молибден, ванадий, титан, кобальт, цирконий иниобий; б) рассеянные: германий, галлий, таллий, индий и рений; в) редкоземельные: лантаноиды; г) радиоактивные: торий, радий, актиний, протактиний и уран; д) искусственные полоний, астат, нептуний, плутоний и др.

Сырье цветной и черной металлургии. По извлекаемому металлу руды называют железными, медными, марганцовыми, свинцовыми, медноникелевыми, урановыми и т. п. По составу их делят на сульфидные, окисленные и самородные. Сульфидными рудами называются породы, в которых получаемый металл находится ввиде сульфидов. Это медные, цинковые, свинцовые и полиметаллические руды (халькопирит CuFeS2, галенит PbS, сфалерит ZnS и др.) Если извлекаемый металл находится в виде оксидов или другихкислородсодержащих минералов (силикаты, карбонаты), то такие руды относят к окисленным. Железные, марганцовые, алюминиевые руды чаще бывают окисленными. Руды, содержащие природные сплавы металлов, называют самородными.

На современном уровне развития технологии считается рентабельной переработка железных руд с содержанием не менее 30 % Fe, цинковых — 3% Zn имедных — 0,5 % Си.

Для получения металла из руды, кроме отделения пустой поро­ды, необходимо отделить металл от химически связанных с ним элементов. Эта стадия называется металлургическим процессом. Металлургический процесс, осуществляемый с применением высо­ких температур, называется пирометаллургическим, с использо­ванием водных растворов — гидрометаллургическим. В отдельную группу выделяют электрометаллургические процессы.

Первая стадия производства — обогащение сырья. Следующая стадия заключается в разложении концентрата обжигом, в обра­ботке его хлором, а также оксидом серы (IV) или жидкими реа­гентами(кислотами, щелочами, комплексообразователями). По­следними двумя способами извлекаемый металл переводят в раст­вор, из которого выделяется оксид или соль редкого металла осаж­дением в виде малорастворимого соединения или кристаллизацией. Завершающая стадия — получение чистого металла или сплававосстановлением углеродом или водородом, термическим разложением, вытеснением (цементация), электролизом растворов или расплавов.

В производстве тугоплавких металлов (вольфрам, молибден – завод «Победит») применяется метод порошковой металлур­гии, заключающийся в восстановлении оксидов порошкообразных металлов. Затем металлический порошок прессуют под большим давлением испекают в электрических печах, получая металл безперевода его в жидкое состояние. Температура спекания металли­ческого порошка обычно на 1/3 ниже температуры плавления ме­талла.

ПРОИЗВОДСТВО ЖЕЛЕЗА И ЕГО СПЛАВОВ

Среди используемых человеком металлов железо и его сплавы по объему и сферам применения занимают первое место. В практике обычно используют не чистое железо, а его сплавы, и в первую очередь с углеродом. В технике железом называют черный металл с содержанием углерода менее 0,2%. По количеству углерода все сплавы делят на стали и чугуны. К сталям относятся железные сплавы с содержанием углерода от 0,2 до 2%, к чугунам — с содержанием углерода выше 2% (обычно от 3,5 до 4,5%).

На рисунке 1 приведена диаграмма фазового состояния системы железо — углерод.

Как следует из диаграммы, температура начала плавления сталей снижается с ростом содер­жания углерода до точки Е. Эта точка соответствует предельной растворимости углерода в твердом железе (2% С). Для чугуна не­зависимо от количества углерода температура плавления остается постоянной.

Если в чугуне значительная часть углерода находится в виде цементита Fe3C, то такой чугун называется белым. Из-за высокой твердости и хрупкости его трудно обрабатывать на станках, поэтому белый чугун перерабатывается в сталь. По этому признаку он получил еще название передельного чугуна. При медленном охлаждении расплавленного чугуна часть Fe3C распадается с выделением свободного углерода в виде графита. Такой чугун называется серым или литейным. Он более мягок, менее хрупок и хорошо обрабатывается на станках.

Читать еще:  Металлообрабатывающие центры с чпу

По составу стали могут быть углеродистыми и легированными. Углеродистыми называют стали, свойства которых определяются углеродом, а другие примеси существенного влияния не оказы­вают. По содержанию углерода эти стали делят на: малоуглеродистые (до 0,3% С), среднеуглеродистые (от 0,3 до 0,65%) и высоко­углеродистые (от 0,65 до 2% С). Из иизкоуглеродистой стали из­готовляют кровельное железо, стальной лист, черную и белую жесть (широко используемую для изготовления тары), мягкую проволоку и т. д.; среднеуглеродистые стали используют для про­изводства рельсов, труб, проволоки, деталей машин; высокоугле­родистая служит в основном для изготовления разнообразного ин­струмента.

Легированными называют стали, содержащие, кроме углерода, другие специально введенные для изменения свойств добавки (Cr, Mn, Ni, V, W, Мо и др.). Сталь, содержащую до 3—5% леги­рующих элементов, считают низколегированной, 5—10%—среднелегированной, 10% и более — высоколегированной. Никель придает стали повышенную пластичность и вязкость, марганец — прочность, хром — твердость и коррозионностойкость, молибден и ванадий — прочность при высоких температурах и т. д. Напри­мер, марганцовистые стали (8—14% Мп) обладают высокой ударо­стойкостью, их используют для изготовления дробилок, шаровых мельниц, рельсов и других ударонапряженных изделий. Хромомолибденовые и хромованадиевые стали идут на изготовление колонн синтеза, работающих под высоким давлением и при повышенной температуре. Из хромоникелевой или нержавеющей стали изго­тавливают химические реакторы, трубопроводы, кухонную посуду, вилки, ножи и т. д. Стали также классифицируют по назначению: строительная (конструкционная), машиностроительная, инстру­ментальная и стали с особыми (специальными) свойствами. Некоторые примеси заметно ухудшают свойства стали. Так, сера придает стали красноломкость — хрупкость при красном калении, фосфор — хладноломкость, т. е. хрупкость при обычной и низкой темпера­туре, азот и водород — газопористость, хрупкость.

В настоящее время главный процесс металлургического про­изводства черных металлов осуществляется по двухступенчатой схеме: получение чугуна в доменной печи и его передел в сталь. Чугун используют также для отливки станин, машин, тяжелых колес, труб и т. д. Основными исходными материалами для произ­водства чугуна являются железные руды, флюсы и топливо.

Промышленные типы железных руд классифицируюг по виду преобладающего рудного минерала: 1) магнитные железняки со­стоят в основном из минерала магнетита Fe3O4 (с наиболее высоким содержанием железа — 50—70% и низким содержанием серы), который трудновосстановим; 2) красные железняки содержат 50—70% железа в виде минерала гематита — Fe2O3, небольшие примеси серы, фосфора и восстанавливаются легче, чем магнетит; 3) бурые железняки представляют собой гидроксиды железа со­става Fe2O3 × пН2О с переменным количеством адсорбированной воды. Эти руды в основном бедные по содержанию железа (от 25 до 53%), часто загрязнены вредными примесями — серой, фосфо­ром, мышьяком. Встречаются хромоникелевые бурые железняки (2% Cr и 1% Ni), используемые для выплавки природнолегированных чугуна и стали; 4) шпатовые железняки содержат 30—37% Fe, а также FeCO3 и незначительные примеси серы и фосфора. После обжига содержание железа возрастает до 50—60%. Для сидеритов часто характерна примесь марганца от 1 до 10%.

Сырьем служат также отходы производства черных и цветных металлов, но их доля в общем потреблении руд невелика. Для перевода тугоплавких оксидов в легкоплавкий шлак, не смешиваю­щийся с чугуном, в процессе доменной плавки используют флюсы — породы основного характера: известняк или доломит (СаСО3, MgCO3). Обычно на выплавку 1 т чугуна расходуется 0,4—0,8 т флюсов.

В качестве топлива в производстве чугуна применяют кокс с содержанием 80—86% С, 2—7% Н2О, 1,2—1,7%S, до 15% золы и природный газ.

Подготовка железной руды к доменной плавке заключается в
дроблении, грохочении, усреднении и обогащении. Обо­гащение ведут в зависимости от типа руды восстановительным обжигом, электромагнитной сепарацией, флотацией. В нашей стране практически всю добываемую руду на последнем этапе подготовки подвергают агломерации. Это процесс спекания измельченной руды с коксовой мелочью (5—8%) и обожженным известняком (3—6%) в агломерационной машине транспортерного типа. Наряду с агломерацией применяют и окомковывание пылевидной руды со связующим веществом во вращающихся обжиговых печах с получением окатышей.

Процесс доменной плавки. Чугун выплавляют в металлур­гических реакторах шахтного типа, называемых до­менными печами или домнами. Описание доменной печи дано в лекции 4.

В зоне горна за счет интенсивной подачи воздуха поддерживается окислительная среда и углерод кокса сгорает:

Воздух, подаваемый в доменную печь, нагревается в регенерагивных воздухоподогревателях (кауперах) до 900—1200 °С (рис. 2).

Особенности производства цветных металлов

Производство цветных металлов – это целая отрасль металлургии, позволяющая получать качественные и чистые элементы в соответствии с потребностями промышленности. Поскольку в природе эта группа в чистом виде практически не встречается, то требуется применение химических или физических методов для их получения.

Производство в современных условиях

Цветные металлы образуют большую группу веществ. Сюда входят все металлы, за исключение только железа и его соединений, которое входит в число черных. Несмотря на большое количество элементов, в природе цветные разновидности встречаются намного реже, поэтому производство цветных металлов и сплавов является важной отраслью промышленности.

Разновидности сырья

Самое название «цветной» означает цвет металла. Некоторые виды, например, медь, имеют ярко выраженный цветовой оттенок. Подобные вещества важны из-за своих свойств и качеств, намного отличающихся от обычного железа.

Поэтому производство цветных металлов и сплавов необходимо для получения качественно новых соединений, применяемых во всех отраслях промышленности.

Сплав – это смешанные металлы. При соединении двух или более металлов, находящихся в расплавленном состоянии, образуется новый материал, имеющий практически полный спектр свойств, которым обладают составляющие сплава.

Цветные металлы распределяются на несколько крупных групп:

  • Тяжелые – в эту группу входят медь, цинк, свинец, олово.
  • Легкие – эта группа представлена магнием, титаном, бериллием, кальцием, стронцием, алюминием, натрием, калием, цезием.
  • Благородные – находятся самые дорогие из цветных металлов, которых мало в природе: платина, золото, серебро, осмий, рутений, родий, палладий.
  • Малые – группа веществ, которых также немного в природе. Сюда относятся кобальт, кадмий, сурьма, висмут, ртуть.
  • Тугоплавкие: марганец, вольфрам, хром, ванадий, тантал.
  • Редкоземельные.
  • Рассеянные.
  • Радиоактивные.
Читать еще:  Станки с чпу для металлообработки обучение

Особенности процесса

В промышленности практически не применяются цветные металлы в чистом виде, а больше используются именно сплавы, что позволяет достигать требуемых свойств. При производстве цветных металлов происходит видоизменение их химических, физических и механических свойств, что очень важно для изготовления как бытовых, так и промышленных предметов.

Особенностью цветных металлов является простота обработки. Практически все они подвергаются шлифовке, ковке, штамповке, прессования, резке, сварке или пайке.

При производстве из этих веществ удается получать не только готовые изделия, но также разнообразные полуфабрикаты:

Способы производства

Для производства цветных металлов и сплавов применяется разнообразные методы, основанные на химических свойствах основы, из которой будет получен металл или сплав и реагента.

Пирометаллургия – метод получения цветного металла путем проведения избирательной плавки, которая может быть окислительной или восстановительной. Источником тепла и главным реагентом чаще всего выступает присутствующая в руде сера.

Электролиз – метод, основанный на химической реакции электролиза. Применяется катод и анод. На катоде, которым выступает ванна из огнеупорного материала, происходит осаждение ионов металла в результате диссоциации. Реакция, в отличие от традиционной, описанной в учебниках химии, проводится не в водной среде, а в расплаве. Это обуславливается необходимостью избежать осаждения на катоде ионов водорода, что не позволяет выделять чистый металл.

Металлотермия – метод восстановления хлоридов или оксидов металла под воздействием другого вещества. Преимущественно технология применяется при производстве титана. Параллельно добывается магний, поскольку хлорид магния выступает побочным продуктом.

Сплавление – этот способ заключается в прямом смешивании двух металлов. Дополнительно в жидком состоянии поставляется шихта или легирующий материал. Этот способ относится к наиболее производительным, менее затратным и позволяет получать незагрязненные металлы., имеющие заданные физико-химические свойства.

Производство отдельных видов

Производство меди

Получение подобного цветного металла происходит из медных руд. Его содержание в составе этих соединении составляет от 1 до 6%. При составе меди менее 1% ее извлечение при современном уровне развития технологии не представляется рентабельным.

Получение меди осуществляется двумя способами:

Первый способ является менее распространенным, поскольку при его использовании не удается извлекать из руды иные элементы.

Пирометаллургический метод добычи меди состоит из нескольких последовательных этапов:

  • Подготовка руды к плавке посредством обогащения и дальнейшего обжига. Это позволяет получить концентрат меди.
  • Последующий обжиг требуется для сокращения количества серы.
  • Плавка на штейн. Путем плавки концентратов меди удается получить штейн или сульфиды меди и железа.

А также проводится конвертирование штейна. Этот этап заключается путем продувки воздухом внутри специального медеплавильного конвертера полученного штейна, что позволяет выделить железо в шлак и получить черновую медь.

И в заключение – рафинирование. Черновая медь подвергается действию огневого плавления и электролитического рафинирования, что позволяет в итоге получить продукт, чистота которого составляет 99,97–99,99%.

Производство алюминия

Получение алюминия происходит методом электролиза глинозема. Процесс включает несколько этапов.

Получение чистого глинозема или оксида алюминия. Этот процесс заключается в обработке бокситов (руд, содержащих металл) щелочными растворами. Результатом является выпадение в виде осадка гидроксида алюминия.

Получение криолита – его производство заключается в обработке плавикового шпата для получения плавиковой кислоты и дальнейшего выделения фторалюминиевой кислоты. Посредством соды криолит выделяется в виде осадка.

Электролиз глинозема – результатом этого процесса является получения алюминия-сырца.

Рафинирование – посредством продувки расплавленного сырца хлором добывается чистый алюминий.

Производство магния

Магний добывается посредством реакции электролиза. Сырьем служат расплавленные соли металла (карналлит, магнезит, доломит, бишофит). Основу электролита составляет хлористый магний. Дополнительно применяется хлористый натрий, кальций и калий.

После проведения реакции на аноде оседает черновой металл, имеющий до 5% примесей. Их удаление происходит посредство процесса рафинирования с использованием флюсов. Все неметаллические компоненты преобразуются в шлак, а чистый металл разливается в изложницы.

Производство титана

По своим качествам титан и его сплавы во многом превосходят легированные стали. Процесс производства титана затрудняется его повышенной активностью, особенно при повышении температуры.

Его особенностью является способность вступать в реакцию со множеством металлов, что требует соблюдения определенных условий для получения чистого титана.

Метод, применяемый для получения титана, называется магниетермия. Он состоит из следующих операций.

Выделение титанового концентрата путем обогащения руды, содержащей подобный металл.

Изготовление шлака – на этом этапе происходит отделение оксидов железа от оксидов титана.

Получение четыреххлористого титана – чтобы получить металлический титан, требуется применение хлорида титана, получаемый при хлорировании шлака.

Восстановление посредством магния – процесс восстановления протекает при очень высоких температурах – близких к 1 тыс. градусов. Реактор, где расплавляется магний, подается парообразный титан. При металлизации он оседает на стенках, а расплавленный магний удаляется через летку.

Сепарация массы в вакууме – полученный в результате предыдущего шага титан в виде губчатой массы требуется нагреть с использованием вакуума, что позволит выделить чистый металл.

Особенности сырья

Все цветные металлы обладают рядом особенностей, что должно учитываться при обработке или их использовании.

Ряд элементов имеют повышенную теплопроводность и удельную теплоемкость:

При сварке место соединения быстро охлаждается, что потребует использования мощных источников, особенно тепла при сварочных работах.

Некоторые элементы при резком нагреве изменяют свои механические свойства. Наблюдается их снижение. При этом сам металл становится легко разрушаемым от ударов или иного механического воздействия.

Все цветные металлы легко вступают во взаимодействие с газами, кроме инертных. Эта особенность характерна для тугоплавких цветных металлов.

Видео по теме: Производство цветных металлов и сплавов

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию