Milling-master.ru

В помощь хозяину
84 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Технология пайки металлов

Технология пайки металла

В этом разделе Вы получите информацию по следующим темам:

Физико-химические ocновы пайки металла. Способы пайки металла.

Припои. Флюсы и газовые среды.

Оборудование для пайки металла.

Подготовка поверхности и сборка под пайку металла.

Технологический процесс пайки металла.

Пайка инструментальных сталей. Пайка металла с керамикой.

Прочность и конструирование паяных соединений.

Производственная санитария, техника безопасности и противопожарная техника пайки металла.

В разделе также приведены справочные сведения по основным способам и технологическим процессам пайки по припоям, флюсам, газовым средам, оборудованию, контрольно-измерительной и регулирующей аппаратуре, производственной санитарии и технике безопасности.

Вопросы проектирования технологического npоцесса повышения эффективности производства, прочности паяных изделий.

Пайка имеет много общего со сваркой плавлением, но между ними имеются и принципиальные различия. Если при сварке основной и присадочный металлы находятся в сварочной ванне в расплавленном состоянии, то при пайке основной металл не плавится.

Пайка — процесс соединения материалов в твердом состоянии припоями, которые при расплавлении затекают в зазор, смачивают паяемые поверхности и при кристаллизации образуют паяный шов.

Для получения спая, т. е. связи на границе основной металл — припой, наряду с нагревом необходимо обеспечить еще два основных условия: удалить с поверхности металлов окисную пленку и обеспечить условия взаимодействия твердого и жидкого металлов.

При кристаллизации вступившего во взаимодействие с паяемыми металлами более легкоплавкого связующего металла (припоя) образуется паяное соединение.

При пайке формирование шва происходит путем заполнения припоем зазора между соединяемыми деталями, т. е. процесс пайки в большинстве случаев связан с капиллярным течением, что не имеет места при сварке плавлением.

В отличие от сварки плавлением пайка может быть осуществлена при любых температурах, лежащих ниже температуры плавления основного металла. Одним из преимуществ пайки является возможность соединения в единое целое за один прием множества заготовок, составляющих изделие.

Поэтому пайка, как ни один другой способ соединения, отвечает условиям массового производства. Она позволяет соединять разнородные металлы, а также металлы со стеклом, керамикой, графитом и другими неметаллическими материалами, что невозможно или весьма трудно осуществить сваркой.

Поскольку при пайке не происходит расплавления кромок паяемых деталей, но при использовании этого способа соединения проще сохранить в процессе изготовления требуемую форму и размеры изделия.

Применяя низкотемпературную пайку, удается сохранить неизменной структуру и свойства металла соединяемых деталей. Важным преимуществом пайки является разъемность паяных соединений, что делает ее незаменимой при монтажных и ремонтных работах в радио- и приборостроении.

Наряду с этим пайка обеспечивает в ряде случаев более высокую надежность изделий, чем сварка. При применении рациональных сочетаний паяемых материалов и припоев и использовании конструкций с оптимальной площадью перекрытия надежность паяных соединений в 4 раза выше, чем сварных, для самолетов и в 20 раз выше для космических аппаратов.

Пайка металлов

Для получения неразъемных соединений деталей имеется много технологических способов. Одним из таких способов является пайка. Она представляет собой технологический процесс, при котором детали разогреваются и соединяются другим расплавленным материалом, называемый припой. Для достижения результата, припой имеет температуру плавления значительно ниже, чем соединяемый металл. Пайка происходит с использованием флюса. Он защищает соединяемую поверхность от влияния атмосферы и способствует лучшему растеканию припоя.

Пайка металлов является высокоэффективным способом соединения. Он имеет широкое применение для пайки труб. Для прочного соединения очень важно подобрать стыкуемые части по своему размеру. Зазор между ними составляет 0,03 – 2 мм. Пайка может быть:

  1. Низкотемпературной. При ней припой нагревается до 450 градусов Цельсия, в основном электрическим способом;
  2. Высокотемпературной. Припой нагревается выше 450 градусов Цельсия горелкой.

Для пайки используют припои:

  • медно-серебряные;
  • оловянно-свинцовые;
  • галлиевые;
  • медно-цинковые;
  • висмутовые и др.

Каждый из них имеет свою температуру плавления и более подходит для определенного металла.

Пайка металлов классифицируется на следующие виды:

  1. Капиллярная. Суть пайки заключается в создании капиллярного притяжения, за счет малого зазора соединения. Может быть вертикальной и горизонтальной;
  2. Диффузионная. Происходит посредством диффузии основного металла и припоя. Подразделяется на атомно-диффузионную и реакционно-диффузионную;
  3. Контактно-реактивная. Процесс соединения может быть с образованием эвтектики, а также с образованием твердого раствора;
  4. Реактивно-флюсовая. Во время нагрева происходит реакция флюса с металлом. В результате этого образуется припой. Такая пайка происходит с припоем или без припоя;
  5. Пайка-сварка. Она может быть с оплавлением или без него.

Технология пайки металлов

Технология пайки металлов протекает в следующем порядке:

  1. Вначале тщательно зачищаются соединяемые поверхности деталей. Снимается фаска;
  2. Наносится тонким слоем флюс. Какой наносить флюс зависит от свойств металла, который будут паять. Для лучшего распределения флюса по поверхности, необходимо прокрутить соединяемые детали. Или же поверхность подвергают лужению;
  3. Затем горелкой разогревается заготовка в определенном радиусе от места соединения. Для более качественной пайки место соединения прогревается до температуры, которая значительно выше температуры плавления припоя;
  4. На разогретое место соединения присоединяют припой, который быстро плавится и заполняет зазор соединяемых деталей. Некоторые виды пайки включают в себя лужение зачищенной поверхности и последующее соединение и прогрев;
  5. После пайки остывание должно происходить естественным путем. Иначе качество соединения может пострадать.
Читать еще:  Технологические особенности металлургии чугуна и стали

Технология пайки металлов без припоя применяется при соединении титана и меди. Используется явление контактного плавления. Учитывая, что плавление меди происходит при температуре 1083 градусов Цельсия, а титана 1725 градусов Цельсия, то при плотном соединении и нагреве до 900 градусов Цельсия, имеющийся зазор заполняется расплавом в месте контакта. Происходит процесс диффузии металлов.

Пайка находит свое применение в соединении труб теплообменников, в холодильных установках, системах, передающие разные жидкости и газы и др.

Оставьте свой комментарий Отменить ответ

Пайка подразумевает технологическую операцию для прочного соединения деталей в одно…

Пайка металлов своими руками

Пайкой называется процесс соединения металлов посредством введенного между ними расплавленного связующего материала — припоя. Последний заполняет зазор между соединяемыми деталями и, застывая, прочно соединяется с ними, образуя неразъемное соединение.

При пайке припой нагревают до температуры, превышающей температуру его плавления, но не достигающей точки плавления металла соединяемых деталей. Становясь жидким, припой смачивает поверхности и заполняет все зазоры за счет действия капиллярных сил. Происходит растворение основного материала в припое и их взаимная диффузия. Застывая, припой прочно сцепляется с паяемыми деталями.

При пайке должно выполняться следующее температурное условие: Т1234, где:

  • Т1 — температура, при которой паяное соединение работает;
  • Т2 — температура плавления припоя;
  • Т3 — температура нагрева при пайке;
  • Т4 — температура плавления соединимых деталей.

Отличия пайки от сварки

Отсутствие расплавления основного металла делает возможным соединение пайкой деталей самых маленьких размеров, а также многократное разъединение и соединение спаянных деталей без нарушения их целостности.

Из-за того, что основной металл не расплавляется, его структура и механические свойства остаются неизменными, отсутствует деформация паяемых деталей, выдерживаются формы и размеры получаемого изделия.

Пайка позволяет соединять металлы (и даже неметаллы) в любом сочетании друг с другом.

При всех своих достоинствах пайка все же уступает сварке по прочности и надежности соединения. Из-за низкой механической прочности мягкого припоя, низкотемпературная пайка встык является непрочной, поэтому для достижения необходимой прочности детали необходимо соединять с перекрытием.

Применение пайки

Применение пайки широко и многообразно. Ею соединяют медные трубы в теплообменниках, холодильных установках и всевозможных системах, транспортирующих жидкие и газообразные среды. Пайка является основным способом крепления твердосплавных пластин к металлорежущему инструменту. При кузовных работах с ее помощью крепят тонкостенные детали к тонкому листу. В виде лужения используют для защиты некоторых конструкций от коррозии.

Широко используется пайка и в домашних условиях. Ею можно соединять между собой детали из различных металлов, уплотнять резьбовые соединения, устранять пористость поверхностей, обеспечивать плотную посадку втулки разболтавшегося подшипника. Везде, где использование сварки, болтов, заклепок или обычного клея по каким-либо причинам невозможно, затруднительно или нецелесообразно, пайка, сделанная даже своими руками, оказывается спасительным выходом из ситуации.

Виды пайки

Одной из основных является классификация пайки по температуре плавления используемого припоя. В зависимости от этого параметра пайку подразделяют на низкотемпературную (используются припои с температурой плавления до 450°C) и высокотемпературную (температура плавления припоев выше 450°C).

Низкотемпературная пайка более экономична и проста в исполнении, чем высокотемпературная. Ее преимуществом является возможность применения на миниатюрных деталях и тонких пленках. Хорошая тепло- и электропроводность припоев, простота выполнения процесса пайки, возможность соединения разнородных материалов обеспечивают низкотемпературной пайке ведущую роль при создании изделий в электронике и микроэлектронике.

К преимуществам высокотемпературной пайки относится возможность изготовления соединений, выдерживающих большую нагрузку, в том числе и ударную, а также получение вакуумно-плотных и герметичных соединений, работающих в условиях высоких давлений. Основными способами нагрева при высокотемпературной пайке, в единичном и мелкосерийном производстве, является нагрев газовыми горелками, индукционными токами средней и высокой частоты.

Композиционная пайка применяется при пайке изделий, имеющих некапиллярные или неравномерные зазоры. Она осуществляется с использованием композиционных припоев, состоящих из наполнителя и легкоплавкой составляющей. Наполнитель имеет температуру плавления выше температуры пайки, поэтому он не расплавляется, а лишь заполняет собой зазоры между паяемыми изделиями, служа средой распространения легкоплавкой составляющей.

По характеру получения припоя различают следующие виды пайки.

Пайка готовым припоем — самый распространенный вид пайки. Готовый припой расплавляется нагревом, заполняет зазор между соединяемыми деталями и удерживается в нем благодаря капиллярным силам. Последние играют очень важную роль в технологии пайки. Они заставляют расплавленный припой проникать в самые узкие щели соединения, обеспечивая его прочность.

Реакционно-флюсовая пайка, характеризующаяся протеканием реакции вытеснения между основным металлом и флюсом, в результате которой образуется припой. Наиболее известная реакция при реакционно-флюсовой пайке: 3ZnCl2 (флюс) + 2Al (соединяемый металл) = 2AlCl3 + Zn (припой).

Чтобы паять металл, кроме подготовленных соответствующим образом паяемых изделий необходимо иметь источник тепла, припой и флюс.

Источники тепла

Нагрев паяльником осуществляют при низкотемпературной пайке. Паяльник нагревает металл и припой за счет тепловой энергии, аккумулированной в массе его металлического наконечника. Кончик паяльника прижимается к металлу, в результате чего происходит нагрев последнего и расплавление припоя. Паяльник может быть не только электрическим, но и газовым.

Читать еще:  Системы чпу металлообрабатывающих станков

Газовые горелки — наиболее универсальный вид нагревательного оборудования. К этой категории можно отнести и паяльные лампы, заправляемые бензином или керосином (в зависимости от типа паяльной лампы). В качестве горючих газов и жидкостей в горелках может использоваться ацетилен, пропан-бутановая смесь, метан, бензин, керосин и пр. Газовая пайка может быть как низкотемпературной (при паянии массивных деталей), так и высокотемпературной.

Существуют и другие способы нагрева при пайке:

  • Пайка индукционными нагревателями, которая активно используется для припаивания твердосплавных резцов режущего инструмента. При индукционной пайке паяемые детали или их части нагреваются в катушке-индукторе, через которую пропускается ток. Преимуществом индукционной пайки является возможность быстрого нагрева толстостенных деталей.
  • Пайка в различных печах.
  • Пайка электросопротивлением, при которой детали нагреваются теплотой, выделяющейся вследствие прохождения электротока через паяемые изделия, являющиеся частью электрической цепи.
  • Пайка погружением, выполняющаяся в расплавленных припоях и солях.
  • Прочие виды пайки: дуговая, лучами, электролитная, экзотермическая, штампами и нагревательными матами.

Припои

Смачиваемость. Прежде всего, припой должен обладать хорошей смачиваемостью по отношению к соединяемым деталям. Без этого будет просто отсутствовать контакт между ним и паяемыми деталями.

В физическом смысле смачивание подразумевает явление, при котором прочность связи между частицами твердого вещества и смачивающей его жидкости оказывается выше, чем между частицами самой жидкости. При наличии смачивания жидкость растекается по поверхности твердого вещества и проникает во все его неровности.

Если припой не смачивает основной металл, пайка невозможна. В качестве такого примера можно привести чистый свинец, который плохо смачивает медь и не может поэтому служить припоем для неё.

Температура плавления. Припой должен иметь температуру плавления ниже температуры плавления соединяемых деталей, но выше той, при которой соединение будет работать. Температура плавления характеризуется двумя точками — температурой солидуса (температура, при которой плавится самый легкоплавкий компонент) и температурой ликвидуса (наименьшим значением, при которой припой становится полностью жидким).

Разница между температурами ликвидуса и солидуса называется интервалом кристаллизации. Когда температура соединения находится в интервале кристаллизации, даже незначительные механические воздействия приводят к нарушениям кристаллической структуры припоя, в результате чего может возникнуть его хрупкость и возрасти электрическое сопротивление. Поэтому необходимо соблюдать очень важное правило пайки — не подвергать соединение никакой нагрузке до полного окончания кристаллизации припоя.

Кроме хорошей смачиваемости и необходимой температуры плавления, припой должен обладать еще рядом свойства:

  • Содержание токсичных металлов (свинца, кадмия) не должно превышать установленных значений для определенных изделий.
  • Должна отсутствовать несовместимость припоя с соединяемыми металлами, которая может привести к образованию хрупких интерметаллических соединений.
  • Припой должен обладать термостабильностью (сохранением прочности паяного соединения при изменении температуры), электростабильностью (неизменностью электрических характеристик при токовых, тепловых и механических нагрузках), коррозионной стойкостью.
  • Коэффициент теплового расширения (КТР) не должен сильно отличаться от КТР соединяемых металлов.
  • Коэффициент теплопроводности должен соответствовать характеру эксплуатации паяного изделия.

В зависимости от температуры плавления припои подразделяют на легкоплавкие (мягкие) с температурой плавления до 450°С и тугоплавкие (твердые) с температурой плавления выше 450°С.

Легкоплавкие припои. Наиболее распространенными легкоплавкими припоями являются оловянно-свинцовые, состоящие из олова и свинца в различном соотношении. Для придания определенных свойств в них могут вводиться другие элементы, например, висмут и кадмий для понижения температуры плавления, сурьма для увеличения прочности шва и т.д.

Оловянно-свинцовые припои имеют низкую температуру плавления и относительно невысокую прочность. Их не следует применять для соединения деталей, испытывающих значительную нагрузку или работающих при температуре выше 100°С. Если все же приходится применять пайку мягкими припоями для соединений, работающих под нагрузкой, нужно увеличивать площадь соприкосновения деталей.

К наиболее широко используемым относятся оловянно-свинцовые припои ПОС-18, ПОС-30, ПОС-40, ПОС-61, ПОС-90, имеющие температуру плавления примерно 190-280°С (из них самый тугоплавкий — ПОС-18, самый легкоплавкий — ПОС-61). Цифры означают процентное содержание олова. Кроме основных металлов (Sn и Pb) припои ПОС содержат также небольшое количество примесей. В приборостроении ими паяют электросхемы, соединяют провода. В домашних условиях с их помощью соединяют самые различные детали.

Пайка металлов. Способы, материалы, припои, флюсы для пайки металлов

Использование пайки известно с древнейших времен. В гробнице вавилонской царицы (III тыс . лет до н. э.), в засыпанной пеплом Везувия Помпее (79 г. до н.э.), во время других раскопок в Египте, Риме и Греции — всюду археологи находили паяные металлические изделия. Припои древних римлян церарий и аргентарий по своему химическому составу близки к существующим в настоящее время ПОС-30 и ПОС-50.

В истории использования пайки можно выделить три периода, которые связаны с развитием источников нагрева и особенностями применяемой техники. Первый период начался в бронзовом веке, когда человечество начало изготавливать изделия из бронзы и источником нагрева служило твердое топливо. Второй период (конец XIX ст.) характеризуется началом применения для нагрева электрической энергии. Третий период начался в 1930–1940-х годах и связан с созданием техники из новых металлов и их сплавов — циркония, вольфрама, алюминиевых, титановых, высокопрочных и жаропрочных сталей и сплавов. Это привело во второй половине ХХ ст. к разработке принципиально новых способов пайки. В настоящее время технические возможности пайки значительно расширились. Во многих случаях пайка является единственно возможной технологией неразъемного соединения новых материалов.

Читать еще:  Порошковая металлургия технология производства

Пайка — процесс получения неразъемного соединения металлов, находящихся в твердом состоянии, расплавленным припоем. Припоем является материал с температурой плавления ниже температуры плавления паяемых материалов. При пайке (в отличие от сварки) плавится только присадочный сплав — припой, а между паяемым материалом и припоем протекает процесс взаимного растворения компонентов.

Требования, предъявляемые к паяному соединению и характеризующие условия его эксплуатации, определяются служебными свойствами изделия в целом: механическими свойствами, герметичностью, вакуум-плотностью, электросопротивлением, коррозионной стойкостью, стойкостью против термоударов, перегрузок и др.

В процессе пайки расплавленный припой вводится в зазор между нагретыми соединяемыми деталями. Припой смачивает поверхности деталей, растекается и заполняет зазор между ними. Взаимодействие припоя с материалом сопровождается растворением основного металла в жидком припое с образованием эвтектик и твердых растворов, взаимной диффузией компонентов припоя в сторону основного металла и компонентов основного металла в сторону припоя с последующей кристаллизацией жидкой прослойки.

Формирование прочного и надежного соединения зависит от химического состава взаимодействующих металлов, температуры и продолжительности пайки, определяющих физико-химические и диффузионные процессы, протекающие между припоем и основным металлом. Чем выше температура процесса и его длительность, тем больше степень взаимной диффузии между расплавленным припоем и основным металлом и тем выше механическая прочность соединяемых деталей. Кроме того, прочность пайки зависит от величины зазора между паяемыми деталями. Так, при малых зазорах улучшается затекание припоя под действием капиллярных сил, вследствие чего значение временного сопротивления паяного соединения больше значения временного сопротивления самого припоя.

Припой прочно соединяется с поверхностью изделия только тогда, когда хорошо смачивает ее. Для этого поверхность должна быть тщательно очищена от загрязнений. Кроме этого, для удаления пленок оксидов с поверхностей паяемого материала и припоя и для предотвращения их образования при пайке используют паяльные флюсы. Флюсы, кроме того, способствуют лучшему затеканию припоя в зазор между соединяемыми деталями и растеканию по их поверхности. Некоторые припои, содержащие эффективные раскислители (бор, кремний, барий, щелочные металлы

иудтр.) мог ные пленки.

сами выполнять роль флюсов, переводя в шлак оксидКачество паяных соединений зависит от правильного выбора способа пайки, используемых основных и вспомогательных материалов, технологического процесса пайки.

Способы пайки. Современные способы пайки принято классифицировать по следующим признакам: механизмам удаления оксидной пленки с поверхности паяемого материала, видам процессов образования припоя в зазоре, условиям заполнения зазора припоем, температурным и временным режимами кристаллизации паяного шва, температуре пайки и используемым источникам нагрева, наличию или отсутствию давления на паяемые деталив, роедмнеонности и очередности выполнения паяных соединений (рис. 3.76).

По механизмам удаления оксидной пленки способы пайки делятся на флюсовые и бесфлюсовые.

Флюсовая пайка — пайка с применением флюса. При этом флюс может также участвовать в образовании самого припоя путем выделения компонентов, плавящихся при пайке.

Бесфлюсовая пайка — пайка без применения флюса, когда удаление оксидных пленок осуществляется в восстановительной или инертной газовой среде, вакууме, а также за счет применения ультразвука.

В первом случае удаление оксидов происходит при высоких температурах за счет их восстановления или самопроизвольного распада (диссоциации), а при ультразвуковой пайке их разрушение осуществляется за счет ультразвуковых колебаний, создаваемых в расплавленном припое, наносимом на соединяемый металл специальным паяльником.

По видам процессов образования припоя в зазоре способы пайки подразделяются на пайку готовым припоем, контактно-реактивную и реактивно-флюсовую.

Рис. 3.76. Классификация способов пайки

Пайка готовым припоем — способ пайки, при котором используется заранее приготовленный припой. В качестве припоя может использоваться металлический (полностью расплавляемый) или композиционный припой. В композиционном припое помимо металлической основы содержится тугоплавкий наполнитель (порошки, волокна, сетки), который сам не плавится, а при плавлении металла припоя образует разветвленную сеть капилляров, удерживающих под действием капиллярных сил его жидкую часть в зазоре между соединяемыми деталями.

Контактно-реактивная пайка — способ пайки, при котором жидкий припой образуется в результате межфазного взаимодействия и последующего контактного плавления соединяемых материалов или соединяемых материалов и прослойки промежуточного металла. К этому способу пайки относится сваркопайка. Сваркопайка — пайка разнородных материалов, при которой более легкоплавкий материал локально нагревается до температуры, превышающей температуру его плавления, и выполняет роль припоя.

Реактивно-флюсовая пайка — способ пайки, при котором припой образуется в результате химических реакций между основным металлом и флюсом. Например, при пайке алюминия с использованием флюса ZnCl3 в результате химической реакции восстановления

образуется цинк, который служит припоем.

По условиям заполнения зазора припоем пайку можно разделить на капиллярную (ширина зазора

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию