Технологический процесс литья в кокиль
ЛИТЬЕ В КОКИЛЬ
В художественном литье литье в кокиль применяется редко из-за трудностей извлечения отливок, а иногда невозможностью их изготовления, а также из-за низкой стойкости формообразующих. Номенклатура деталей ограничена некоторыми отливками посудной группы и отливками с несложным художественным контуром.
Технологический процесс
Кокильным литьем называют способ получения отливок в металлических формах при гравитационном заполнении металла. Металлическая форма используется многократно.
Технологический процесс состоит в следующем. Кокиль нагревают и окрашивают. Окончательный разогрев кокиля производят двух-, трехразовой заливкой жидким металлом. Расплавленный металл очищают, рафинируют и заливают в кокиль. После извлечения из кокиля отливки отделяют от литниковой системы и зачищают. Для ликвидации пористости отливки пропитывают спецсоставом. Если отливка имеет сложную внутреннюю конфигурацию, то в кокиль устанавливают песчаные стержни.
Особенности формирования отливки:
- • быстрый теплоотвод через металлический кокиль, обеспечивающий мелкокристаллическую плотную структуру. В чугунных отливках наблюдается отбел;
- • отсутствие газопроницаемости формы требует конструктивных приспособлений в кокильной оснастке;
- • неподатливость кокиля вызывает сильные напряжения в отливке и даже образование трещин.
- • повышение точности и качества поверхности отливок;
- • высокие механические свойства металла;
- • многократное использование формы;
- • сокращение расхода формовочных материалов, оборудования и площадей для его размещения;
- • повышение производительности труда и увеличение съема с производственной площади;
- • снижение себестоимости отливок при их высоком качестве.
- • сложность получения тонкостенных отливок;
- • невозможность извлечения отливок со сложным контурами (стоящие животные, люди и пр.);
- • невозможность получения сложных полостей металлическими стержнями;
- • значительные напряжения, возникающие в отливках;
- • отбел в чугунных отливках;
- • высокая стоимость кокиля и длительность его изготовления.
Краски предназначены для предотвращения пригара металла к материалу кокиля и для регулировки теплопередачи. Благодаря меньшей по сравнению с металлом теплопроводностью уменьшается скорость отвода теплоты (q) от жидкого металла (рис. 25.1):
где Р — коэффициент теплоотдачи металла; X — теплопроводность облицовки; % — толщина облицовки.
Рис. 25.1. Температура в системе «металл — краска — кокиль»:
1 — металл; 2 — краска; 3 — кокиль
Изменяя состав облицовки (ее теплопроводность) и ее толщину, можно регулировать скорость охлаждения металла отливки. Краски состоят из связующих (жидкое стекло, глина, лигносульфонаты) активаторов (KMn0/j-K2Cl;07) H3B03 и огнеупорного порошка (пылевидный кварц, оксиды магния, циркония, тальк, графит и т.д.). Выбор краски определяется материалом и конфигурацией отливки.
В кокиль заливают стали, чугуны, цветные сплавы. Особо широко применяют алюминиевые легкоплавкие сплавы.
В кокильном литье используют литниковые системы с подводом сверху, сифоном и т.д., щелевые литники. Площадь питателя (FimT) рассчитывают по формуле
где G — масса отливок, кг; р — коэффициент расхода и сопротивления, зависящий от вида сплава, р чугуна = 0,24-^0,43, р алюминия = 0,6^-0,7; р —
коэффициент, учитывающий плотность металла, р = 0,001y^/2g (g= 980 см/с 2 ), алюминий — у = 2,7, р = 0,1, серый чугун — у = 7,2, р = 0,31; t — время заливки, с, выбирается эмпирически; Я — расчетный статический напор (рис. 25.2),
Рис. 25.2. К расчету статистического напора
Площадь сечения остальных элементов литниковой системы определяют: • серый чугун и алюминий —
При работе кокиль должен иметь оптимальную температуру. Цель подогрева:
- • улучшение качества отливок (недолив, трещины);
- • предупреждение отбела в чугунных отливках;
- • удлинение срока эксплуатации кокиля (тепловой удар);
- • предупреждение образования газовых раковин и соблюдение правил техники безопасности (конденсация влаги).
Перегрев кокиля недопустим, поскольку:
- • в утолщенных местах отливок может появиться усадочная раковина или пористость;
- • снижается стойкость кокиля;
- • снижется производительность (увеличение времени охлаждения). Температурный режим подбирают таким образом, чтобы охлаждение
кокиля компенсировало приход тепла от заливаемого металла, который в свою очередь определяется ритмом работы. Режим кокиля зависит:
- • от материала кокиля;
- • материала краски и ее толщины;
- • материала заливаемого сплава;
- • конфигурации отливки (тонко- или толстостенная отливка).
Для нагрева используют электричество или газ. Окончательный разогрев — жидкий металл.
Охлаждение интенсифицируют ребристой поверхностью кокиля, воздушным и водяным охлаждением.
Толщина кокиля определяется в основном эмпирическим способом из условий достаточной механической прочности. Формула для расчета толщины кокиля:
где 1Х — толщина стенки отливки; /2 — толщина стенки кокиля.
Время выдержки отливки в кокиле определяют с учетом тепловых взаимодействий между отливкой и кокилем. Формула для расчета:
где т — общее время охлаждения отливки в кокиле.
Кокильная оснастка
- • по плоскости разъема (горизонтальная, вертикальная и т.д.);
- • по подготовке рабочей поверхности (без покрытий, отбеливание и т.д.);
- • по способу изготовления (механическая обработка, литье и т.д.);
- • по применяемым стержням (металлические, песчаные и т.д.).
Кокиль состоит из следующих основных элементов:
- • нолуформа;
- • вентиляционная система;
- • толкатели и контртолкатели;
- • стержни.
К материалам кокилей предъявляют требование противостоять гермо- ударам.
Литье в кокиль. Суть процесса. Основные операции и область использования
Кокильное литье, или литье в постоянные формы, – это литье металла, осуществляемое свободной заливкой кокилей. Кокиль (от фр. Coquille – раковина, скорлупа) – металлическая форма с естественным или принудительным охлаждением, заполняемая расплавленным металлом под действием гравитационных сил.
Кокиль (рисунок 3.1) обычно состоит из двух полуформ 12, плиты 11 и вставок 7. Полуформы взаимно центрируются штырями 6, а перед заливкой их соединяют замками 13. Полости и отверстия в отливке могут быть выполнены металлическими или песчаными стержнями, извлекаемыми из отливки после ее затвердевания и охлаждения до заданной температуры. Расплав заливают в кокиль через литниковую систему 5, выполненную в его стенках, а питание массивных узлов отливки осуществляется из прибыли 2.
При заполнении кокиля расплавом воздух и газы удаляются из его рабочей полости 10 через вентиляционные каналы 1, пробки 3, каналы между металлическими частями 9, образующие вентиляционную систему кокиля.
Рисунок 3.1 – Кокиль:1 – вентиляционные каналы; 2 – прибыль; 3 – вентиляционная пробка; 4 – песчаный стержень; 5 – литниковая система; 6 – штырь (центрирующий элемент); 7 – вставка; 8 – металлический стержень; 9 – вентиляционный канал; 10 – полость формы; 11 – плита (поддон); 12 – полуформы; 13 – замок
Основные элементы кокиля – полуформы, плиты, вставки, стержни и т.д. – обычно изготовляют из чугуна или стали. Выше рассмотрен кокиль простой конструкции, но в производственной практике часто используют кокили весьма сложных конфигураций.
Основные операции технологического процесса
Перед заливкой расплава новый кокиль подготовляют к работе: поверхность рабочей полости и разъем тщательно очищают от следов загрязнений, ржавчины, масла, проверяют легкость перемещения подвижных частей, точность их центрирования, надежность крепления. Затем на поверхность рабочей полости и металлических стержней наносят слой огнеупорного покрытия – облицовки и краски (рисунок 3.2, а). Состав облицовок и красок зависит в основном от типа заливаемого сплава, а их толщина – от требуемой скорости охлаждения отливки: чем толще слой огнеупорного покрытия, тем медленнее отливка охлаждается. Вместе с тем слой огнеупорного покрытия предохраняет рабочую поверхность формы от резкого повышения ее температуры при заливке, оплавления и схватывания с металлом отливки.
Рисунок 3.2 – Последовательность изготовления отливки в кокиле (стрелки – направление движения деталей кокиля): а – окраска кокиля; б – установка стержней; в – сборка и заливка формы; г – затвердевание отливки; д – разборка кокиля
Перед нанесением огнеупорного покрытия кокиль нагревают газовыми горелками или электрическими нагревателями до температуры 150 – 280 о С. Краски наносят на кокиль обычно в виде водной суспензии через пульверизатор. Вода капель водной суспензии, попадающих на поверхность нагретого кокиля, испаряется, а огнеупорная составляющая ровным слоем покрывает поверхность.
После нанесения огнеупорного покрытия кокиль нагревают до рабочей температуры, зависящей в основном от состава заливаемого сплава, толщины стенки отливки, ее размеров и требуемых свойств. Затем в кокиль устанавливают песчаные или керамические стержни (рисунок 3.2, б), если таковые необходимы для получения отливки, половины кокиля соединяют (рисунок 3.2, в) и скрепляют специальными зажимами, а при установке кокиля на кокильной машине – с помощью ее механизма запирания, после чего заливают расплав в кокиль. Часто в процессе затвердевания и охлаждения отливки, после того как она приобретет достаточную прочность (рисунок 3.2, г), металлические стержни «подрывают», т.е. частично извле-кают из отливки. Это делают для того, чтобы уменьшить давление затвердевающей отливки на металлический стержень и облегчить последующее извлечение его из отливки. После охлаждения отливки до заданной температуры кокиль раскрывают, полностью извлекают металлический стержень и удаляют из кокиля отливку (рисунок 3.2, д). Из отливки выбивают песчаный стержень, обрезают литники, прибыли, выпоры, контролируют качество отливки. Затем описанный выше цикл повторяется.
Перед повторением цикла осматривают рабочую поверхность кокиля, плоскость разъема. Обычно огнеупорную краску наносят на рабочую поверхность кокиля 1 – 2 раза в смену, изредка восстанавливая ее в местах, где она отслоилась от рабочей поверхности. Так как за время извлечения отливки и окраски рабочей поверхности кокиля он охлаждается, в частности при литье тонкостенных отливок охлаждается чрезмерно, для повторения цикла требуется подогрев кокиля до рабочей температуры. Если же отливка достаточно массивная, то за счет ее теплоты кокиль может нагреваться до температуры более высокой, чем требуемая рабочая. Для такого случая в кокиле предусмотрены специальные системы охлаждения, и на следующую заливку он поступает охлажденным.
Процесс литья в кокиль является малооперационным. Манипуляторные операции достаточно простые и кратковременные, а лимитирующей по продолжительности операцией является охлаждение отливки в форме до заданной температуры. Практически все операции могут быть выполнены механизмами машины или автоматической установки, что относится к существенным преимуществам способа. Самым важным является то, что исключается трудоемкий и материалоемкий процесс изготовления разовой формы – кокиль используется многократно.
Особенности формирования и качество отливок
Металлическая форма по сравнению с песчаной обладает значительно большими теплопроводностью, теплоемкостью, прочностью, практически нулевыми газопроницаемостью и газотворностью. Этими свойствами материала кокиля обусловлены рассмотренные далее особенности его взаимодействия с металлом отливки.
1. Высокая эффективность теплового взаимодействия отливки и формы: расплав и затвердевшая отливка охлаждаются в кокиле быстрее, чем в песчаной форме, т.е. при одинаковых гидростатическом напоре и температуре заливаемого расплава заполняемость кокиля обычно хуже, чем песчаной формы. Это осложняет получение в кокилях отливок из сплавов с пониженной жидкотекучестью и ограничивает минимальную толщину стенок и размеры отливок. Вместе с тем повышенная скорость охлаждения способствует получению плотных отливок с мелкозернистой структурой, что повышает прочность и пластичность металла отливок. Однако в отливках из чугуна, получаемых в кокилях, вследствие особенностей кристаллизации часто образуются карбиды, феррито-графитная эвтектика, отрицательно влияющие на свойства чугуна, так как снижают показатели ударной вязкости и износостойкости. Резко возрастающая твердость в отбеленном поверхностном слое затрудняет обработку резанием таких отливок и приводит к необходимости подвергать их термической обработке (отжигу) для устранения отбела.
2. Кокиль практически неподатлив и более интенсивно препятствует усадке отливки, что затрудняет извлечение ее из формы и может вызвать появление внутренних напряжений, коробления отливки и трещин в ней. В то же время неподатливая форма не деформируется по причине увеличения объема некоторых расплавов при кристаллизации из-за предусадочного расширения, например, в результате выделения графита в чугуне. В этом случае уменьшается опасность формирования усадочной пористости при затвердевании отливки.
При литье в кокиль отсутствуют погрешности, вызываемые упругими и остаточными деформациями песчаной формы, снижающими точность ее рабочей полости и соответственно отливки. Размеры рабочей полости кокиля могут быть выполнены значительно точнее, чем размеры песчаной формы, и отливки в кокилях соответственно получаются более точными. Точность отливок в кокилях обычно соответствует классам 5 – 9 для отливок из цветных сплавов и классам 7 – 11 для отливок из черных металлов (ГОСТ 26645-85 (изм. № 1, 1989)). При этом наибольшая точность обеспечивается для размеров в одной части формы. Точность размеров в двух и более частях формы, а также размеров, оформляемых подвижными частями формы, ниже. Точность отливок, полученных в кокиле, по массе примерно на один класс выше по сравнению с песчаными формами, при этом обеспечивается возможность уменьшения припусков на обработку резанием.
3. Физико-химическое взаимодействие металла отливки и кокиля минимально, что определяет высокое качество поверхности отливки. Отливки в кокиль не имеют пригара. Шероховатость поверхности отливок зависит от состава облицовок и красок, наносимых на поверхность рабочей полости формы, и соответствует Rz = 40 – 10 мкм, но может быть и меньше.
4. Кокиль практически газонепроницаем и имеет минимальную газотворность, определяемую в основном составами огнеупорных покрытий, наносимых на поверхность рабочей полости. Однако газовые раковины в кокильных отливках – явление нередкое. Причины их появления различны, но в любом случае расположение отливки в форме, способ подвода расплава и вентиляционная система должны обеспечивать удаление воздуха и газов из кокиля при заливке.
Эффективность производства и область применения
Эффективность кокильного производства отливок, как и производства отливок другими способами литья, зависит от полноты и правильности использования преимуществ этого процесса с учетом его особенностей и недостатков в условиях конкретного производства.
Ниже приведены преимущества литья в кокиль в сравнении с литьем в песчаные формы.
1. Обусловленное использованием металлической формы повышение качества отливки и стабильности показателей качества, в частности: механических свойств, структуры, плотности, шероховатости, точности размеров отливок.
2. Использование в металлических формах разовых песчаных стержней. Это существенно расширяет возможности способа при производстве фасонных отливок со сложными внешними и внутренними поверхностями.
3. Повышение производительности труда в результате исключения трудоемких операций приготовления смеси, формовки и очистки отливок. Поэтому использование литья в кокили, по данным различных предприятий, позволяет в 2 – 3 раза повысить производительность труда в литейном цехе, снизить капитальные затраты при строительстве новых цехов и реконструкции существующих за счет сокращения требуемых производственных площадей, расходов на оборудование и очистные сооружения.
4. Устранение тяжелых и вредных операций выбивки форм, очистки от-ливок от пригара, их обрубки, общее оздоровление и улучшение условий труда, меньшее загрязнение окружающей среды.
5. Возможность механизации и автоматизации процесса изготовления отливки благодаря многократному использованию кокиля. При литье в кокиль устраняется процесс изготовления литейной формы, остаются лишь сборочные операции: установка стержней, соединение частей кокиля и их крепление перед заливкой, которые легко автоматизируются. Устраняются также такие возмущающие факторы, влияющие на качество отливок при литье в песчаные формы, как влажность, прочность, газопроницаемость формовочной смеси, т.е. процесс литья в кокиль является более управляемым. Для получения отливок заданного качества в кокильном производстве легче осуществить автоматическое регулирование технологических параметров процесса. Автоматизация процесса позволяет изменить характер труда литейщика-оператора, управляющего работой таких комплексов.
Однако способ литья в кокили имеет и недостатки, в числе которых следующие.
1. Высокая стоимость кокиля, сложность и трудоемкость его изготовления. Стоимость кокиля возрастает при получении отливок с поднутрениями, для выполнения которых необходимо усложнять конструкцию формы – делать дополнительные разъемы, использовать вставки, разъемные металлические или песчаные стержни.
2. Ограниченная стойкость кокиля, измеряемая числом годных отливок, которые можно получить в данном кокиле. От стойкости кокиля зависит экономическая эффективность процесса, особенно при литье чугуна и стали. Поэтому проблема повышения стойкости кокиля относится к важнейшим при решении технологических задач кокильного литья этих сплавов.
3. Высокая интенсивность охлаждения расплава в кокиле в сравнении с песчаной формой. Данный фактор ограничивает возможность получения тонкостенных протяженных отливок, а в чугунных отливках дополнительно приводит к отбелу поверхностного слоя, ухудшающему обработку резанием; вызывает необходимость термической обработки отливок.
4. Неподатливость кокиля, которая приводит к появлению в отливках напряжений, а иногда и трещин.
5. Использование в кокиле большого числа песчаных стержней. Этот фактор снижает точность получаемых отливок и повышает в этих местах шероховатость их поверхности.
Преимущества и недостатки кокильного способа определяют в итоге рациональную область его использования. Вследствие высокой стоимости кокилей экономически целесообразно применять этот способ литья только в серийном или массовом производстве. Серийность при литье чугуна должна составлять более 20 крупных или более 400 мелких отливок в год, а при литье алюминия – не менее 400 – 700 отливок в год.
Эффективность литья в кокиль обычно определяют в сравнении с литьем в песчаные формы. Экономический эффект достигается благодаря устранению формовочной смеси, повышению качества отливок, их точности, уменьшению припусков на обработку, снижению трудоемкости очистки и обрубки отливок, механизации и автоматизации основных операций и, как следствие, повышению производительности и улучшению условий труда.
Таким образом, литье в кокиль с полным основанием можно отнести к трудо- и материалосберегающим, малооперационным и малоотходным технологическим процессам, улучшающим условия труда в литейных цехах и уменьшающим вредное воздействие на окружающую среду.
Литье в кокиль
Литье в кокиль – это технологический процесс изготовления отливок путем заливания металлического расплава в многооборотные формы, выполненные из металла (сталь, чугун и пр.). Эту форму называют кокиль.
Процесс литья в кокиль
Перед началом литья в кокиль металлического расплава необходимо выполнить операции технологического процесса по подготовке его к работе. Эта работа выполняется в несколько этапов.
- Поверхности кокиля и место стыков полуформ необходимо очистить от загрязнений, коррозии, масел.
- Выполняют проверку подвижности перемещающихся деталей, точность их установки и надежность крепления на местах для этого предназначенных.
- На этом этапе поверхности формы смазывают огнестойкими материалами. В этом качестве применяют специальные краски и смазки.
Технологический процесс литья в кокиль
Веществ, которые применяют при облицовке кокиля, зависят от марки заливаемого состава. Толщина покрытия зависит от необходимой скорости охлаждения отлитой заготовки. То есть, чем больше слой наносимой облицовки, тем заготовка будет медленнее охлаждаться. Огнестойкий слой призван решить еще одну задачу в процессе этого литья – обеспечить сохранность формы от скачка температуры во время заливки металла, а также оплавления ее частей и их схватывания с расплавом. В состав огнеупорной облицовки могут входить следующие материалы – кварц, глина, жидкое стекло, графит.
Процесс отлива в кокиль
Перед началом заливки металла форму прогревают до температуры порядка 200 градусов. Эта температура определяется маркой заливаемого металла и габаритов отливки.
Конструктивные особенности кокиля
Кокиль для литья – это многооборотная форма, изготавливаемая из металла. Несмотря на то что в такие формы могут использовать для получения отливок разных форм, их принципиальная конструкция одинакова. В состав кокиля для литья входят полуформы, плита, различные вставки и литейные стержни. С помощью последних, происходит формирование отливки. Для его центрирования и соединения применяют штыри. Непосредственно перед началом заливки полуформы фиксируют с помощью специальных замков. Металлический расплав подают в форму через систему литников.
Литье в металлические формы (кокиль)
По мере заполнения кокиля излишки воздуха выводятся через воздуховодные каналы.
В литейном производстве применяют и другой вид форм – их называют вытряхными. Эти формы отличаются тем, что они неразъемные и применяются для отливок простой формы.
Процесс изготовление кокиля и используемые материалы
При изготовлении кокилей проектировщик должен руководствоваться марками сплава, которые будут заливаться в изготавливаемую форму. Разумеется, он должен учитывать и размер деталей, получаемых в результате литья в эту оснастку.
Так, при изготовлении деталей с небольшими габаритами из цветных металлов, чугуна и некоторых других материалов рекомендуется использовать для производства литейных форм серые чугуны 20 или 25. Для производства кокилей применяют и другие виды материалов. Надо отметить, что чем прочнее материал, например, сталь 15Л, тем выше стойкость формы. Для определенных марок металла формы производят из алюминия, но перед эксплуатацией этих кокилей рабочие поверхности анодируют.
Производство кокилей выполняют на оборудовании объемной штамповки. Но современное оборудование, работающее под управлением компьютера, например, токарно-фрезерный центр позволяет производить особо точные формы.
Преимущества и недостатки литья в кокиль
Литье этого типа, как и многие технологические процессы, обладают и преимуществами, и недостатками. Можно сравнить литье в кокильную оснастку с литьем в песчаные формы.
К основным преимуществам можно отнести то, что литье в металлические формы отличается от всех остальных качеством получаемых деталей, в частности, точностью. Применение песочных стержней позволяет выполнять отливки сложной формы.
Использование металлических кокилей позволяет повысить производительность труда на литейном производстве. Это обусловлено тем, что из производства исключены такие операции, как приготовление литьевой смеси, и чистки отливок.
Использование такого типа литья позволяет уменьшить припуски на дальнейшую механическую обработку. Такой подход позволяет снизить себестоимость готового изделия.
Такое свойство кокилей, как оборачиваемость позволяет механизировать процессы литья и последующей обработки отливок. Например, операция сборки этой оснастки может быть легко автоматизирована. Кроме того из процессов исключены факторы, которые могут отрицательно сказаться на качестве отливок, например, газопроницаемость смеси. Автоматизация литейных процессов регулировать технологические режимы литейных процессов, что приводит к изменению характера труда оператора литейного комплекса и повышению его безопасности.
Между тем при множестве достоинств литье этого класса имеет и ряд недостатков.
Кокиль обладает высокой стоимостью, это является следствием его конструктивной сложности и и высокой трудоемкости производства. Особенно это относится к оснастке, в которые отливают детали сложной геометрической конфигурации.
Литейная оснастка такого типа имеет ограниченную стойкость. Стойкость оснастки определяется количеством качественных отливок. При снижении качества, его просто направляют в утилизацию. Стойкость – это ключевой экономический показатель литья. Над повышением стойкости форм этого класса работают производители и проектировщики оборудования для литья в формы этого типа по всему миру.
Литье сплава в кокиль
Интенсивность охлаждения отливок в кокиле существенно выше, чем в песчаных или земляных оснастках. Это приводит к тому, что ограничена возможность изготовления отливок с тонкими стенками.
Поскольку эти оснастки не обладает достаточной податливостью – это может привести к появлению в отлитых деталях внутренних напряжений. Которые потом устраняют с помощью термообработки.
Область применения
Кокильное литье широко используют для производства отливок из черных и цветных металлов. На автоматизированном оборудовании, предназначенном для этой обработки металлов допустимо литье алюминия в кокиль, но при этом вес отливки не должен превышать 30 кг.
На неавтоматизированном оборудовании допустимо литье чугуна в кокиль, при этом масса отливки не должна превышать 12 тонн.
Этапы литья в кокиль
Сложно найти промышленную отрасль, в которой не применяют литье в кокиль. Эта технология позволяет изготавливать широкий круг деталей из различных металлов. Например, на электротехнических заводах их применяют для отливки деталей электрических машин, на предприятиях, которые выпускают силовые установки для автомобилей, эту технологию применяют для производства головок блока цилиндров или картеров защиты.
Кокильная литейная машина
Практика показывает, что чаще всего литье этого типа применяют в отношении алюминия и его сплавов. На втором месте стоит чугун и на третьем сталь.
Основные операции технологического процесса
Перед заливкой расплава новый кокиль подготовляют к работе: поверхность рабочей полости и разъем тщательно очищают от следов загрязнений, ржавчины, масла; проверяют легкость перемещения подвижных частей, точность их центрирования, надежность крепления. Затем на поверхность рабочей полости и металлических стержней наносят слой огнеупорного покрытия облицовки и краски (рис.2а). Состав облицовок и красок зависит в основном от заливаемого сплава, а их толщина — от требуемой скорости охлаждения отливки: чем толще слой огнеупорного покрытия, тем медленнее охлаждается отливка. Вместе с тем слой огнеупорного покрытия предохраняет рабочую поверхность формы от резкого повышения ее температуры при заливке, расплавлении и схватывании с металлом отливки. Таким образом, облицовки и краски выполняют две функции: защищают поверхность кокиля от резкого нагрева и схватывания с отливкой и позволяют регулировать скорость охлаждения отливки, а значит, и процессы ее затвердевания, влияющие на свойства металла отливки. Перед нанесением огнеупорного покрытия кокиль нагревают газовыми горелками или электрическими нагревателями до температуры 423 — 453 К. Краски наносят на кокиль обычно в виде водной суспензии через пульверизатор. Капли водной суспензии, попадая на поверхность нагретого кокиля, испаряются, а огнеупорная составляющая ровным слоем покрывает поверхность.
После нанесения огнеупорного покрытия кокиль нагревают до рабочей температуры, зависящий в основном от состава заливаемого сплава, толщины стенки отливки, ее размеров, требуемых свойств. Обычно температура нагрева кокиля перед заливкой 473 — 623 К. Затем в кокиль устанавливают песчаные или керамические стержни (рис.2б), если таковые необходимы для получения отливки; половины кокиля соединяют и скрепляют специальными зажимами, а при установке кокиля на кокильной машине с помощью ее механизма запирания, после чего заливают расплав в кокиль (рис.2в).
Рис. 2 Основные операции процесса литья в кокиль:
а — нанесение огнеупорного покрытия; б — установка стержней; в — сборка кокиля и заливка формы; г — «подрыв» стержней; д — раскрытие кокиля
Часто в процессе затвердевания и охлаждения отливки, после того как отливка приобретет достаточную прочность, металлические стержни (рис.2г), т.е. частично извлекают из отливки до ее извлечения из кокиля. Это делают для того, чтобы уменьшить обжатие усаживающейся отливкой металлического стержня и обеспечить его извлечение из отливки. После охлаждения отливки до заданной температуры кокиль раскрывают (рис.2д), окончательно извлекают металлический стержень и удаляют отливку из кокиля. Из отливки выбивают песчаный стержень, обрезают литники, прибыли, выпоры, контролируют качество отливки. Затем цикл повторяется.
Перед повторением цикла осматривают рабочую поверхность кокиля, плоскость разъема. Обычно огнеупорную краску наносят на рабочую поверхность кокиля 1 — 2 раза в смену, изредка восстанавливая ее в местах, где она отслоилась от рабочей поверхности. После этого при необходимости, что чаще бывает при литье тонкостенных отливок или сплавов с низкой жидкотекучестью, кокиль подогревают до рабочей температуры, так как за время извлечения отливки и окраски рабочей поверхности он охлаждается. Если же отливка достаточно массивная, то, наоборот, кокиль может нагреваться ее теплотой до температуры большей, чем требуемая рабочая, и перед следующей заливкой его охлаждают. Для этого в кокиле предусматривают специальные системы охлаждения.
Как видно, процесс литья в кокиль — малооперационный. Манипуляторные операции достаточно просты и кратковременны, а лимитирующей по продолжительности операцией является охлаждение отливки в форме до заданной температуры. Практически все операции могут быть выполнены механизмами машины или автоматической установки, что является существенным преимуществом способа, и, конечно, самое главное — исключается трудоемкий и материалоемкий процесс изготовления формы: кокиль используется многократно.
Особенности формирования и качество отливок. Кокиль — металлическая форма, обладающая по сравнению с песчаной значительно большей теплопроводностью, теплоемкостью, прочностью, практически нулевыми газопроницаемостью и газотворностью. Эти свойства материала кокиля обусловливают рассмотренные ниже особенности его взаимодействия с металлом отливки.
- 1. Высокая эффективность теплового взаимодействия между отливкой и формой: расплав и затвердевающая отливка охлаждаются в кокиле быстрее, чем в песчаной форме, т.е. при одинаковых гидростатическом напоре и температуре заливаемого расплава заполняемость кокиля обычно хуже, чем песчаной формы. Это осложняет получение в кокилях отливок из сплавов с пониженной жидкотекучестью и ограничивает минимальную толщину стенок и размеры отливок. Вместе с тем повышенная скорость охлаждения способствует получению плотных отливок с мелкозернистой структурой, что повышает прочность и пластичность металла отливок. Однако в отливках из чугуна, получаемых в кокилях, вследствие особенностей кристаллизации часто образуются карбиды, ферритографитная эвтектика, отрицательно влияющие на свойства чугуна: снижается ударная вязкость, износостойкость, резко возрастает твердость в отбеленном поверхностном слое, что затрудняет обработку резанием таких отливок и приводит к необходимости подвергать их термической обработке (отжигу) для устранения отбела.
- 2. Кокиль практически неподатлив у более интенсивно препятствует усадке отливки, что затрудняет извлечение ее из формы, может вызвать появление внутренних напряжений, коробление и трещины в отливке.
Однако размеры рабочей полости кокиля могут быть выполнены значительно точнее, чем песчаной формы. При литье в кокиль отсутствуют погрешности, вызываемые расталкиванием модели, упругими и остаточными деформациями песчаной формы, снижающими точность ее рабочей полости и соответственно отливки. Поэтому отливки в кокилях получаются более точными. Точность отливок в кокилях обычно соответствует 12 — 15-ам квалитетам по СТ СЭВ 145 — 75. При этом точность по 12-му квалитету возможна для размеров, расположенных в одной части формы. Точность размеров, расположенных в двух и более частях формы, а также оформляемых подвижными частями формы, ниже. Коэффициент точности отливок по массе достигает 0.71, что обеспечивает возможность уменьшения припусков на обработку резанием.
- 3. Физико-химическое взаимодействие металла отливки и кокиля минимально, что способствует повышению качества поверхности отливки. Отливки в кокиль не имеют пригара. Шероховатость поверхности отливок определяется составами облицовок и красок, наносимых на поверхность рабочей полости формы, и соответствует Rz=80-18 мкм, но может быть и меньше.
- 4. Кокиль практически газонепроницаем, но и газотворность его минимальна и определяется в основном составами огнеупорных покрытий, наносимых на поверхность рабочей полсти. Однако газовые раковины в кокильных отливках — явление не редкое. Причины их появления различны, но в любом случае расположение отливки в форме, способ подвода расплава и вентиляционная система должны обеспечивать удаление воздуха и газов из кокиля при заливке.
Эффективность производства и область применения. Эффективность производства отливок в кокиль, как, впрочем, и других способов литья, зависит от того, насколько полно и правильно инженер-литейщик использует преимущества этого процесса, учитывает его особенности и недостатки и условиях конкретного производства. Ниже приведены преимущества литья в кокиль на основе производственного опыта.
- 1. Повышение производительности труда в результате исключения трудоемких операций смесеприготовления, формовки, очистки отливок от пригара. Поэтому использование литья в кокили, по данным различных предприятий, позволяет в 2 — 3 раза повысить производительность труда в литейном цехе, снизить капитальные затраты при строительстве новых цехов и реконструкции существующих за счет сокращения требуемых производственных площадей, расходов на оборудование, очистные сооружения, увеличить съем отливок с 1 м2 площади цеха.
- 2. Повышение качества отливки, обусловленное использованием металлической формы, повышение стабильности показателей качества: механических свойств, структуры, плотности, шероховатости, точности размеров отливок.
- 3. Устранение или уменьшение объема вредных для здоровья операций выбивки форм, очистки отливок от пригара, их обрубки, общее оздоровление и улучшение условий труда, меньшее загрязнение окружающей Среды.
- 4. Механизация и автоматизация процесса изготовления отливки, обусловленная многократностью использования кокиля. Для получения отливок заданного качества легче осуществить автоматическое регулирование технологических параметров процесса. Автоматизация процесса позволяет улучшить качество отливок, повысить эффективность производства, изменить характер труда литейщика-оператора, управляющего работой таких комплексов.
Недостатки литья в кокиль:
- 1. Высокая стоимость кокиля, сложность и трудоемкость его изготовления.
- 2. Ограниченная стойкость кокиля, измеряемая числом годных отливок, которые можно получить в данном кокиле. От стойкости кокиля зависит экономическая эффективность процесса.
- 3. Сложность получения отливок с поднутрениями, для выполнения которых необходимо усложнять конструкцию формы — делать дополнительные разъемы, использовать вставки, разъемные металлические или песчаные стержни.
- 4. неподатливый кокиль приводит к появлению в отливках напряжений, а иногда к трещинам.
Этот способ литья применяют как правило в серийных и массовых производствах.
Эффективность литья в кокиль обычно определяют в сравнении с литьем в песчаные формы. Экономический эффект достигается благодаря устранению формовочной смеси, повышению качества отливок, их точности, уменьшению припусков на обработку, снижению трудоемкости очистки и обдувки отливок, механизации и автоматизации основных операций и, как следствие, повышению производительности и улучшению условий труда.
Литье в кокиль следует отнести к трудо- и материалосберегающим, малооперационным и малоотходным технологическим процессам, улучшающим условия труда в литейных цехах и уменьшающим вредное воздействие на окружающую среду.
Классификация конструкций кокилей. В зависимости от расположения поверхности разъема кокили бывают: неразъемные, с вертикальной плоскостью разъема, с горизонтальной плоскостью разъема, со сложной поверхностью разъема.
Неразъемные, или вытряхные, кокили применяют, когда конструкция отливки позволяет удалить из плоскости кокиля без его разъема.
Кокили с вертикальной плоскостью разъема состоят из двух и более полуформ. Отливка может располагаться целиком в одной из половин кокиля, в двух половинах кокиля, одновременно в двух половинах кокиля и в нижней плите.
Кокили с горизонтальным разъемом применяют преимущественно для простых по конфигурации, а также крупногабаритных отливок.
Кокили со сложной (комбинированной) поверхностью разъема используют для изготовления отливок сложной конфигурации.
В зависимости от способа охлаждения различают кокили с воздушным, жидкостным и с комбинированным охлаждением. Воздушное охлаждение используют для малотеплонагруженных кокилей. Водяное охлаждение используют обычно для высокотеплонагруженных кокилей, а также для повышения скорости охлаждения отливки или ее отдельных частей.
К основным конструктивным элементам кокилей относят:
Формообразующие элементы — половины кокилей, нижние плиты, вставки, стержни, конструктивные элементы — выталкиватели, плиты выталкивателей, запирающие механизмы, системы нагрева и охлаждения кокиля и отдельных его частей, вентиляционную систему, центрирующие штыри и втулки.
Корпус кокиля или его половины выполняют коробчатыми, с ребрами жесткости. Толщина стенки кокиля зависит от состава заливаемого сплава и его температуры, размеров и толщины стенки отливки, материала, из которого изготовляется кокиль, конструкции кокиля. Толщина стенки кокиля должна быть достаточной, чтобы обеспечить заданный режим охлаждения отливки, достаточную жесткость кокиля и минимальное его коробление при нагреве теплотой залитого расплава, стойкость против растекания.
Стержни в кокилях могут быть песчаными и металлическими. Песчаные стержни для кокильных отливок должны обладать пониженной газотворностью и повышенной поверхностной прочностью. Первое требование обусловлено трудностями удаления газовиз кокиля; второе — взаимодействием знаковых частей стержней с кокилем, в результате чего отдельные песчинки могут попасть в полость кокиля и образовать засоры в отливке. Стержневые смеси и технологические процессы изготовления песчаных стержней могут быть различными.
Металлические стержни применяют, когда это позволяет конструкция отливки и технологические свойства сплава. Использование металлических стержней дает возможность повысить скорость затвердевания отливки, сократить продолжительность цикла ее изготовления. Однако при использовании металических стержней возрастают напряжения в отливках, возможно появление трещин.
Вентиляционная система обеспечивает направленное вытеснение воздуха из кокиля расплавом. Для выхода воздуха используют открытые выпоры, прибыли, зазоры по плоскости разъема и между подвижными частями кокиля и специальные вентиляционные каналы. В местных углублениях формы при заполнении их расплавом могут образовываться воздушные мешки. В этих местах в стенке кокиля устанавливают вентиляционные пробки. При выборе места установки вентиляционных пробок необходимо учитывать последовательность заполнения формы расплавом.
Центрирующие элементы — контрольные штыри и втулки — предназначены для точной фиксации половин кокиля при его сборке. Обычно их количество не превышает двух. Их располагают в диагонально расположенных углах кокиля.
Запирающие механизмы предназначены для предотвращения раскрытия кокиля и исключения прорыва расплава по его разъему при заполнении, а также для обеспечения точности отливок.
Системы нагрева и охлаждения предназначены для поддержания заданного температурного режима кокиля. Применяют электрический и газовый обогрев. Первый используется для общего нагрева кокиля, второй более удобен для общего и местного нагрева.