Milling-master.ru

В помощь хозяину
6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Литейный алюминиевый сплав

ЛИТЕЙНЫЕ АЛЮМИНИЕВЫЕ СПЛАВЫ

Литейные сплавы используют для изготовления изделий различными методами литья: в изложницах из разных материалов по выплавляемым моделям, под давлением, а также способами прецизионного литья.

Эти сплавы должны обладать высокой жидкотекучестью, небольшой усадкой, малой склонностью к образованию горячих трещин и пористостью, сопротивлением коррозии.

Высокими литейными свойствами обладают сплавы, содержащие в своей структуре эвтектику. Эвтектика образуется во многих сплавах, в которых содержание легирующих элементов больше предельной растворимости в алюминии. В связи с этим содержание легирующих элементов в литейных сплавах выше, чем в деформируемых. Чаще применяют сплавы А1—Si; Al—Си; А1—Mg, которые дополнительно легируют небольшим количеством меди и магния (А1—Si), марганца, никеля, хрома (А1—Си). Для измельчения зерна, а следовательно, улучшения механических свойств, в сплав вводят модифицирующие добавки: Ti, Zr, В, V и др.

Маркировка алюминиевых литейных сплавов, содержит буквы АЛ: А — сплав алюминиевый, Л — литейный; затем следует цифра — порядковый номер сплава.

Сплавы Al—Si. Эти сплавы, получившие название силуминов, близки по составу к эвтектическому сплаву и поэтому отличаются высокими литейными свойствами, а отливки — большой площадью.

Наиболее распространен сплав, содержащий 10—13% Si (АЛ2), обладающий высокой коррозионной стойкостью.

Силумин АЛ2 не упрочняется термообработкой, имеет невысокие механические свойства, но из-за малого интервала кристаллизации не образует усадочной пористости. Поэтому из сплава АЛ2 изготавливают герметические отливки сложной конфигурации.

Силумин АЛ4 дополнительно легирован магнием (0,2—0,3% Mg). При этом в сплаве образуется Mg2Si, который является эффективным упрочнителем при термообработке. Поэтому силумины АЛ4 и АЛ9 — термически упрочненные сплавы.

Средненагруженные детали из сплава АЛ4 подвергают только искусственному старению, а крупные нагруженные детали (корпуса компрессоров, блоки цилиндров двигателей) — закалке и искусственному старению. Отливки из сплава АЛ9, требующие повышенной пластичности, подвергают закалке, а для повышения прочности — закалке и старению.

Сплавы А1—Si сравнительно легко обрабатываются резанием. Их можно сваривать, используя газовую и аргонодуговую сварку.

Сплавы А1—Си. Эти сплавы (АЛ7, АЛ 19) после термообработки имеют высокие механические свойства при нормальных и повышенных температурах и хорошо обрабатываются резанием. Литейные свойства сплавов невысоки из-за большой усадки, они склонны к образованию горячих трещин. Сплав АЛ7 используется для небольших отливок простой формы, склонен к хрупкому разрушению вследствие выделения по границам зерен грубых частиц СиА12 и Al?Cu2Fe, поэтому его применяют в закаленном состоянии. Если от отливок требуется повышенная прочность, то их после закалки подвергают искусственному старению при 150 °С в течение 2—4 ч.

В сплаве АЛ 19 кроме СиА12 образуются фазы Al12Mn2Cu и Al3Ti. Титан измельчает зерно. Интерметаллиды повышают жаропрочность сплава. Упрочнение сплава достигается закалкой и старением при 175 °С в течение 3—5 ч. Сплавы А1—Си неустойчивы против коррозии, поэтому отливки обычно анодируют.

Сплавы А1—Mg (магналии). К ним относятся, например, АЛ8 и АЛ27. Они имеют низкие литейные свойства, стойки против коррозии, имеют повышенные механические свойства и хорошо обрабатываются резанием. Добавление к сплавам АЛ8, АЛ27, которые содержат 0,5—11,5% Mg, модифицирующих присадок Ti, Zr, Be улучшает их механические свойства, а добавление бериллия к тому же уменьшает окисляемость расплава этих сплавов.

Сплавы АЛ8 и АЛ27 предназначены для отливок, работающих во влажной атмосфере (судостроение). Эти сплавы применяют после закалки от 430 °С с охлаждением в масле (40—50 °С) и выдержки при температуре закалки в течение 12—20 ч. Добавление к сплавам А1—Mg до 1,5% Si (сплавы АЛИ, АЛ22) улучшает литейные свойства в результате образования тройной эвтектики.

Жаропрочные сплавы. Наиболее широко применяется сплав АЛ 1, из которого изготавливают поршни, головки цилиндров и другие детали, работающие при температуре 275—300 °С. Это сплавы системы А1—Си—Ni—Mg. Структура литого сплава АЛ1 состоит из a-твердого раствора, содержащего Си, Mg, Ni, и избыточных фаз Al2CuMg; Al6Cu3Ni. Отливки применяют после закалки и кратковременного старения при 175 °С.

Более жаропрочны сплавы АЛ33, АЛ 19. Высокая жаропрочность обусловлена добавками Mn, Ti, Ni, Се, Zr, образующими нерастворимые интерметалл идные фазы.

Для изготовления крупногабаритных деталей, работающих при 300—350 °С, применяют сплав АЛ21. Отливки закаливают от 525 °С в горячей воде и стабилизируют отпуском при 300 °С.

Литейные алюминиевые сплавы

В последнее время достаточно большое распространение получили алюминиевые сплавы. Это связано с тем, что они обладают исключительными эксплуатационными качествами. Существует просто огромное количество различных видов алюминия, классификация зависит от химического состава и многих других показателей. Довольно большое распространение получили литейные алюминиевые сплавы. Они могут применяться для изготовления самых различных деталей, в большинстве случаев, корпусов. Рассмотрим особенности литейных алюминиевых сплавов подробнее.

Общая характеристика и свойства

Существует довольно большое количество разновидностей литейных алюминиевых сплавов, каждый из которых обладает своими особенностями. Алюминиевый литейный сплав характеризуется следующими эксплуатационными качествами:

  1. Высокие литейные качества. Подобный металл довольно часто применяется для литья по форме. Высокие литейные качества позволяют создавать детали сложной формы.
  2. Плотность. Химический состав алюминиевых литейных сплавов определяет то, что их плотность относительно невелика. За счет этого вес получаемой конструкции относительно небольшой.
  3. Коррозионная стойкость также высокая. Она может снижаться за счет добавления различных легирующих элементов.
  4. Рассматривая свойства сплавов следует отметить и повышенную прочность, а также твердость. Эти качества достигаются путем добавления самых различных веществ.
  5. Высокая степень обрабатываемости. Путем литья достаточно часто получают заготовки, которые в дальнейшем доводят до готового состояния путем механической обработки на фрезерном или другом оборудовании.

Подобные материалы обладают хорошими литейными свойствами, что позволяет получать детали со сложными поверхностями. Сплавы с высоким содержанием магния или других легирующих элементов могут подвергаться дополнительной термообработке.

В большинстве случаев к данному материалу предъявляют следующие требования:

  1. Хорошие литейные свойства. Именно они считаются наиболее важными при рассмотрении алюминиевых сплавов данной группы. Чем менее выражены литейные качества, тем хуже раствор заполняет созданную форму. Литейные свойства могут определяться самыми различными методами.
  2. Небольшая усадка. Процесс усадки практически неизбежен при литье по форме. Однако некоторые составы более склонны к образованию раковин и других дефектов при литье, другие меньше. Чем меньше усадка, тем более качественным получается изделие.
  3. Высокая жидкотекучесть. Если созданная форма для литья имеет большое количество сложных поверхностей, то для их заполнения состав должен обладать повышенным показателем жидкотекучести.
  4. Малая склонность к образованию горячих трещин. При выполнении литейных операций возникает вероятность появления трещин, которые снижают прочность структуры и эксплуатационные качества материала.
  5. Низкая склонность к пористости. Пористая структура обладает менее привлекательными эксплуатационными качествами, так как она имеет меньшею прочность, впитывает влагу и может быть подвержена воздействию коррозии.
  6. Оптимальные механические и химические свойства. Современные методы легирования позволяют сделать легкий материал более прочным. Для этого проводится добавление самых различных компонентов. Оптимальные механические свойства представлены сочетанием легкости и прочности, а также другими качествами.
  7. Мелкозернистая однородная структура. При рассмотрении особенностей структуры получаемых изделий следует отметить, что однородная лучше воспринимает оказываемые нагрузки и вероятность появления дефектов существенно снижается. Неоднородную структуру можно охарактеризовать тем, что изделие может иметь разный показатель твердости поверхности, на одной части может появляться коррозия, другая может оказаться быть более устойчивой к подобному воздействию.
Читать еще:  Литьевой камень технология

Исключить вероятность образования многих дефектов можно путем соблюдения технологии отливки и обработки полученного сплава. Кроме этого, используемый состав также в той или иной степени определяет вероятность образования дефектов.

Литейные алюминиевые сплавы в чушках

Наиболее важным качеством можно назвать жидкотекучесть. Она определяет способность заполнения литейной формы. Кроме этого уделяют внимание тому, какова склонность состава к образованию газовых и усадочных пустот. Измеряется показатель жидкотекучести тем, какая емкость и за какое время может заполниться. Стоит учитывать, что повышенное содержание оксидов становится причиной снижения показателя жидкотекучести.

Процесс литья также определяет высокую вероятность образования усадочных раковин. При охлаждении расплав уменьшается в объеме. Выделяют два основных типа образующейся раковины:

Для определения степени усадки используются различные методы.

При литье также часто встречается деформация, которая становится причиной образования трещин. Она связана с процессом, который определяется сжимающим напряжением между уже затвердевшим и кашеобразным составом.

Различают несколько разновидностей алюминиевых литейных сплавов, о которых далее поговорим подробнее.

Виды литейных алюминиевых сплавов

Все литейные сплавы алюминия можно условно разделить на несколько основных групп:

  1. Высокопрочные и жаропрочные сплавы. Наиболее распространенным материалом из этой группы можно назвать алюминиевый сплав АЛ19. Его легируют путем добавления титана, за счет чего придаются более высокие механические свойства. Добавление легирующих элементов может проводится при низких или комнатных температурах. Жаропрочность определяет то, что механические свойства и линейные размеры остаются неизменными даже при нагреве состава до температуры 350 градусов Цельсия. Сплавы этой группы хорошо свариваются, а также обладают высокой обрабатываемостью. Стоит учитывать, что за счет легирования коррозионная стойкость относительно невысокая. Существенно повысить прочность можно путем закалки или старения. Подобные марки литейных алюминиевых сплавов широко используются при литье крупногабаритных отливок по песчаной форме.
  2. Конструкционные герметичные алюминиевый сплав обладают более высокими литейными свойствами. Распространенные марки: АЛ4 и АЛ9. Также следует отметить достаточно высокую коррозионную стойкость. Стоит учитывать тот момент, что термическая обработка в этом случае не проводится. При закалке или старении эксплуатационные качества не улучшаются. Хороший комплекс технологических свойств определяет популярность алюминиевого сплава.
  3. Коррозионностойкие металлы. К данной группе относится маркировка АЛ27 и АЛ8. Следует учитывать, что подобный тип металла обладает высокой стойкостью к воздействию повышенной влажности. Высокая коррозионная стойкость во многих агрессивных средствах существенно расширяет область применения металла. Кроме этого, структура определяет хорошую свариваемость и обрабатываемость резанием. Однако отметим, что металл обладает низкой жаропрочностью – структура не может выдержать воздействие температуры выше 80 градусов Цельсия. За счет легирования снижаются и литейные свойства. Исключением можно назвать сплав АЛ24, основные свойства которого сохраняются при температуре до 150 градусов Цельсия.

Последняя группа сплавов получила достаточно широкое распространение при изготовлении корпусов и деталей, на которые оказывается воздействие морской воды. Из-за высокой концентрации соли на поверхности довольно часто образуется коррозия.

К литейным сплавам принято относить составы, в которых есть от 10 до 13% кремния. Довольно часто в состав добавляются магний, медь и другие присадки, способные существенно повысить прочность. Также в состав добавляют титан и цирконий. В свою очередь, марганец может существенно повысить антикоррозионные свойства.

Несмотря на то, что в большинстве случаев железо и никель считаются вредными примесями, в данном случае они добавляются для существенного повышения жаропрочности.

Рассматривая маркировку отметим, что для этого применяется обозначение от АЛ2 до АЛ20. Эти материалы сегодня еще называют силуминами. Их химический состав, от которого зависят механические качества, может существенно отличаться. Именно поэтому следует подробно рассматривать состав каждой марки.

Применение

Алюминиевый литейный сплав сегодня применяется при производстве фасонных отливок. Отметим, что разделают как чистый алюминий, так и полученный после вторичной переработки. В химической и пищевой промышленности может использоваться чистый алюминий. Этот материал применим и в электротехнике. Важным моментом является то, что на алюминий приходится более 20% литейных сплавов.

Детали из литейных алюминиевых сплавов

Рассматривая особенности производства отметим, что первичный металл производится в чушках на специализированных алюминиевых заводах. Есть и вторичная цветная металлургия, которая предусматривает применение вторичного лома или отходов. За счет применения менее дорого сырья существенно снижается стоимость материалов.

В России только 50% заводов проводит использование лома в качестве основы. В более развитых странах мира, к примеру, США, Японии, Германии сегодня при производстве алюминиевых сплавов вторичное сырье применяется не менее чем в 90%. За счет этого существенно снижается стоимость различных изделий, а также повышается экологическая чистота.

Применение литейного алюминия весьма обширно:

  1. Изготовление корпусных деталей. Именно при производстве корпусных деталей чаще всего применяют литейные алюминиевые сплавы. Это связано с тем, что подобным образом существенно снижается их стоимость. Для получения сложных изделий из стандартной заготовки применяют современное фрезерное оборудование, которое стоит дорого и требует соответствующей оснастки.
  2. Получение различных заготовок в сфере кораблестроения и авиастроения. На протяжение нескольких столетий алюминий используется для изготовления деталей, которые применяются при сборе самолетов и различных летательных аппаратов.
  3. Изготовление деталей сложной формы и различных размеров. Детали, представленные телами вращения и плоскими поверхностями сложны в изготовлении при применении оборудования по механической обработке.
  4. Получение элементов, которые применяются для осуществления подачи электричества. При добавлении легирующих элементов получаются сплавы, обладающие хорошими токопроводящими способностями.
Читать еще:  Литейная латунь марки

Очень большое количество деталей в моторостроении получается также путем литья. Данный метод изготовления позволяет получить детали с высокоточными размерами и качественной поверхностью.

В заключение отметим, что сегодня данный тип металла получил широкое применение в самых различных областях промышленности. Это также можно связать с тем, что стоимость производства подобного металла относительно невысока. Сочетание высоких эксплуатационных качеств с низкой стоимостью и определяют широкое распространение металла в самых различных отраслях промышленности.

Литейные алюминиевые сплавы

Литейные алюминиевые сплавы. Для таких сплавов характерны следующие технологические свойства:

жидкогекучесть — способность хорошо заполнять литейную форму;

отсутствие склонности к образованию трещин при кристаллизации («горячих трещин»);

герметичность — способность плотных беспористых отливок выдерживать без течи высокие давления жидкостей или газов;

малая усадка — небольшое сокращение объема сплава при переходе его из жидкого состояния в твердое и последующем охлаждении до нормальной температуры;

малая ликвация (зональная, дендритная) — получение однородного по составу сплава в пределах всего слитка и по сечению отдельных дендритов.

Лучшими литейными свойствами обладают эвтектические сплавы, кристаллизующиеся при постоянной температуре, а худшими — сплавы со структурой твердых растворов, затвердевающих в широком интервале температур. Механические свойства литейных сплавов по сравнению с деформируемыми хуже, особенно низки показатели пластичности и ударной вязкости.

Среди алюминиевых литейных сплавов наиболее распространены силумины — сплавы алюминия с кремнием эвтектического состава (

12% Si), содержащие кристаллы кремния и твердого раствора кремния в алюминии (рис. 13.27). При литье в обычных условиях эти сплавы имеют неудовлетворительную структуру, так как эвтектика получается грубопластинчатой, с крупными включениями хрупкого кремния, в результате чего сплавы имеют низкие механические свойства.

Для измельчения структуры и улучшения механических свойств применяют не термообработку, а модифицирование — добавление в жидкий сплав специальных флюсов, содержащих хлористые и фтористые соли натрия (2—3% от массы сплава). При взаимодействии этих солей с жидким алюминием образуется металлический натрий, оказывающий модифицирующее действие.

Рис. 13.27. Диаграмма состояния А1—Si: сплошные линии — до модифицирования, штриховые — после модифицирования

Введение натрия в сплав приводит к смещению линий диаграммы состояния в сторону повышения концентрации кремния в эвтектике до

14% (штриховые линии на рис. 13.27). Это способствует понижению температуры кристаллизации эвтектики. В результате при кристаллизации вместо грубых хрупких кристаллов Si образуется мелкокристаллическая эвтектика, содержащая кристаллы сфероидальной формы Si и первичные кристаллы мягкой пластичной фазы — твердого раствора. В результате материал становится более прочным и пластичным (рис. 13.28). Для улучшения механических свойств и жидкотекучести силумины легируют медью, марганцем, магнием.

Свойства литейных сплавов улучшаются при повышении скорости кристаллизации. Свойства быстро закристаллизованных образцов могут на 25—40% превосходить свойства сплавов, кристаллизовавшихся более медленно.

Некоторые элементы, являющиеся легирующими для одних сплавов, оказывают вредное воздействие на другие. Кремний снижает прочность сплавов системы А1—Mg и ухудшает механические свойства сплавов систем А1—Si и А1—Си. Олово и свинец значительно понижают температуру начала плавления сплавов. Отрицательно влияет на силумины железо, вызывая образование хрупкой эвтектики А1—Si—Fe, кристаллизующейся в виде пластин. Значительно повысить свойства фасонных отливок можно путем уменьшения вредных металлических и неметаллических примесей в сплавах, введением в небольших количествах титана, циркония, бериллия, модифицированием сплавов и их термической обработкой.

Рис. 13.28. Зависимость механических свойств немодифицированного (сплошные линии) и модифицированного (штриховые линии) силумина от концентрации кремния

Литейные алюминиевые сплавы маркируют буквами АЛ (А — алюминиевый сплав, Л — литейный), за которыми следует цифра, указывающая номер по ГОСТу.

Силумины представляют собой двойные сплавы системы А1—Si и сплавы на основе более сложных систем: А1—Si—Mg, Al—Si—Си, Al—Si—Mg—Си. Они характеризуются хорошими литейными свойствами, высокой коррозионной стойкостью, большой плотностью (герметичностью); применяются для изготовления сложных отливок. Для борьбы с газовой пористостью силуминов используют кристаллизацию отливок под давлением.

Наиболее распространенный силумин АЛ2, содержащий 10—13% Si, применяют для фасонного литья изделий, от которых не требуется высокая прочность. При повышенных требованиях к прочностным характеристикам используют специальные — доэвтектические силумины с содержанием кремния 4—10% и добавками меди, магния и марганца (АЛЗ, АЛ4, АЛ5, АЛ6, АД9). Эти сплавы обладают худшими литейными, но более высокими механическими свойствами, чем силумин АЛ2. Для изготовления особо сложных отливок применяют цинковистый силумин АЛ 11. Добавка цинка улучшает литейные свойства.

Кроме силуминов в качестве литейных используют сплавы алюминия с высоким содержанием магния (свыше 5%). К ним относятся сплавы системы Al—Mg (АЛ8), сплавы системы Al—Mg—Si с добавкой Мп (АЛ 13 и АЛ 28), Be и Ti (АЛ22). Сплавы этой группы коррозионностойки, высокопрочны и имеют пониженную плотность.

Наибольшей прочностью обладает сплав АЛ8, но технология его изготовления сложна. Для уменьшения окисляемости в жидком состоянии в него вводят 0,05—0,07% Be, а для измельчения зерна — такое же количество Ti, в формовочную смесь для подавления реакции металла с влагой добавляют борную кислоту. Сплавы АЛ 13 и АЛ 28 имеют лучшие литейные свойства, но меньшую прочность и не способны упрочняться термической обработкой.

Длительные низкотемпературные нагревы могут привести к ухудшению коррозионной стойкости литейных сплавов с высоким содержанием магния. В целом они имеют повышенную коррозионную стойкость, хорошо свариваются; их используют в ракетостроении, морском и речном судостроении, в производстве сварных емкостей, цистерн, трубопроводов и т. д.

Существуют литейные сплавы алюминия с медью — АЛ 12, АЛ7. Сплав АЛ7 (4—5% Си) имеет хорошие механические, но плохие литейные свойства. Из него изготавливают небольшие отливки, подвергаемые значительным механическим воздействиям. Сплав АЛ 12 (9—11% Си) имеет высокие литейные, но низкие механические свойства. По показателям он уступает обычному силумину и используется мало. Сплавы системы А1—Си— Мп с добавкой Ti (АЛ 19) являются жаропрочными, но имеют пониженные литейные свойства, коррозионную стойкость и герметичность. Сплавы систем А1—Си—Mg—Ni и А1—Си—Mg—Mn—Ni (АЛ 1, АЛ21) отличаются высокой жаропрочностью, но плохо обрабатываются.

Читать еще:  Технология производства осб плит

Химический состав и механические свойства некоторых литейных алюминиевых сплавов приведены в табл. 13.9.

Химический состав и механические свойства литейных алюминиевых сплавов

Алюминий и его сплавы: характеристика, свойства, применение

Алюминий — серебристо-белый легкий парамагнитный металл. Впервые получен физиком из Дании Гансом Эрстедом в 1825 году. В периодической системе Д. И. Менделеева имеет номер 13 и символ Al, атомная масса равна 26,98.

Производство алюминия

Для производства алюминия используют бокситы — это горная порода, которая содержит гидраты оксида алюминия. Мировые запасы бокситов почти не ограничены и несоизмеримы с динамикой спроса.

Боксит дробят, измельчают и сушат. Получившуюся массу сначала нагревают паром, а затем обрабатывают щелочью — в щелочной раствор переходит большая часть оксида алюминия. После этого раствор длительно перемешивают. На этапе электролиза глинозем подвергают воздействию электрического тока силой до 400 кА. Это позволяет разрушить связь между атомами кислорода и алюминия, в результате чего остается только жидкий металл. После этого алюминий отливают в слитки или добавляют к нему различные элементы для создания алюминиевых сплавов.

Алюминиевые сплавы

Наиболее распространенные элементы в составе алюминиевых сплавов — медь, марганец, магний, цинк и кремний. Реже встречаются сплавы с титаном, бериллием, цирконием и литием.

Алюминиевые сплавы условно разделяют на две группы: литейные и деформируемые.

Для изготовления литейных сплавов расплавленный алюминий заливают в литейную форму, которая соответствует конфигурации получаемого изделия. Эти сплавы часто содержат значительные примеси кремния для улучшения литейных свойств.

Деформируемые сплавы сначала разливают в слитки, а затем придают им нужную форму.

Происходит это несколькими способами в зависимости от вида продукта:

  1. Прокаткой, если необходимо получить листы и фольгу.
  2. Прессованием, если нужно получить профили, трубы и прутки.
  3. Формовкой, чтобы получить сложные формы полуфабрикатов.
  4. Ковкой, если требуется получить сложные формы с повышенными механическими свойствами.

Марки алюминиевых сплавов

Для маркировки алюминиевых сплавов согласно ГОСТ 4784-97 пользуются буквенно-цифровой системой, в которой:

  • А — технический алюминий;
  • Д — дюралюминий;
  • АК — алюминиевый сплав, ковкий;
  • АВ — авиаль;
  • В — высокопрочный алюминиевый сплав;
  • АЛ — литейный алюминиевый сплав;
  • АМг — алюминиево-магниевый сплав;
  • АМц — алюминиево-марганцевый сплав;
  • САП — спеченные алюминиевые порошки;
  • САС — спеченные алюминиевые сплавы.

После первого набора символов указывается номер марки сплава, а следом за номером — буква, которая обозначает его состояние:

  • М — сплав после отжига (мягкий);
  • Т — после закалки и естественного старения;
  • А — плакированный (нанесен чистый слой алюминия);
  • Н — нагартованный;
  • П — полунагартованный.

Виды и свойства алюминиевых сплавов

Алюминиево-магниевые сплавы

Эти пластичные сплавы обладают хорошей свариваемостью, коррозийной стойкостью и высоким уровнем усталостной прочности.

В алюминиево-магниевых сплавах содержится до 6% магния. Чем выше его содержание, тем прочнее сплав. Повышение концентрации магния на каждый процент увеличивает предел прочности примерно на 30 МПа, а предел текучести — примерно на 20 МПа. При подобных условиях уменьшается относительное удлинение, но незначительно, оставаясь в пределах 30–35%. Однако при содержании магния свыше 6% механическая структура сплава в нагартованном состоянии приобретает нестабильных характер, ухудшается коррозийная стойкость.

Для улучшения прочности в сплавы добавляют хром, марганец, титан, кремний или ванадий. Примеси меди и железа, напротив, негативно влияют на сплавы этого вида — снижают свариваемость и коррозионную стойкость.

Алюминиево-марганцевые сплавы

Это прочные и пластичные сплавы, которые обладают высоким уровнем коррозионной стойкости и хорошей свариваемостью.

Для получения мелкозернистой структуры сплавы этого вида легируют титаном, а для сохранения стабильности в нагартованном состоянии добавляют марганец. Основные примеси в сплавах вида Al-Mn — железо и кремний.

Сплавы алюминий-медь-кремний

Сплавы этого вида также называют алькусинами. Из-за высоких технических свойств их используют во втулочных подшипниках, а также при изготовлении блоков цилиндров. Обладают высокой твердостью поверхности, поэтому плохо прирабатываются.

Алюминиево-медные сплавы

Механические свойства сплавов этого вида в термоупрочненном состоянии порой превышают даже механические свойства некоторых низкоуглеродистых сталей. Их главный недостаток — невысокая коррозионная стойкость, потому эти сплавы обрабатывают поверхностными защитными покрытиями.

Алюминиево-медные сплавы легируют марганцем, кремнием, железом и магнием. Последний оказывает наибольшее влияние на свойства сплава: легирование магнием значительно повышает предел текучести и прочности. Добавление железа и никеля в сплав повышает его жаропрочность, кремния — способность к искусственному старению.

Алюминий-кремниевые сплавы

Сплавы этого вида иначе называют силуминами. Некоторые из них модифицируют добавками натрия или лития: наличие буквально 0,05% лития или 0,1% натрия увеличивает содержание кремния в эвтектическом сплаве с 12% до 14%. Сплавы применяются для декоративного литья, изготовления корпусов механизмов и элементов бытовых приборов, поскольку обладают хорошими литейными свойствами.

Сплавы алюминий-цинк-магний

Прочные и хорошо обрабатываемые. Типичный пример высокопрочного сплава этого вида — В95. Подобная прочность объясняется высокой растворимостью цинка и магния при температуре плавления до 70% и до 17,4% соответственно. При охлаждении растворимость элементов заметно снижается.

Основной недостаток этих сплавов — низкую коррозионную стойкость во время механического напряжения — исправляет легирование медью.

Авиаль

Авиаль — группа сплавов системы алюминий-магний-кремний с незначительными добавлениями иных элементов (Mn, Cr, Cu). Название образовано от сокращения словосочетания «авиационный алюминий».

Применять авиаль стали после открытия Д. Хансоном и М. Гейлером эффекта искусственного состаривания и термического упрочнения этой группы сплавов за счет выделения Mg2Si.

Эти сплавы отличаются высокой пластичностью и удовлетворительной коррозионной стойкостью. Из авиаля изготавливают кованые и штампованные детали сложной формы. Например, лонжероны лопастей винтов вертолетов. Для повышения коррозионной стойкости содержание меди иногда снижают до 0,1%.

Также сплав активно используют для замены нержавеющей стали в корпусах мобильных телефонов.

Физические свойства

  • Плотность — 2712 кг/м 3 .
  • Температура плавления — от 658°C до 660°C.
  • Удельная теплота плавления — 390 кДж/кг.
  • Температура кипения — 2500 °C.
  • Удельная теплота испарения — 10,53 МДж/кг.
  • Удельная теплоемкость — 897 Дж/кг·K.
  • Электропроводность — 37·10 6 См/м.
  • Теплопроводность — 203,5 Вт/(м·К).

Ссылка на основную публикацию
Adblock
detector