Milling-master.ru

В помощь хозяину
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Литейные свойства сплавов

Литейные свойства сплавов

Общая технологическая схема изготовления отливки

Сущность литейного производства состоит в том, что фасонные детали (заготовки) получают заливкой жидкого металла в литейную форму, полость которой соответствует их размерам и форме. После крис­таллизации металла литую деталь (заготовку), называемую отлив­кой, удаляют из литейной формы и в случае необходимости от­правляют в механический цех для последующей обработки.

Технология изготовления отливки начинается с разработки ее чертежа и рабочих чертежей модельного комплекта (модели и стержневого ящика).

В состав литейного цеха входят отделения: модельное, земле­приготовительное, стержневое, формовочное, плавильное, выбивное, обрубное, очистное. В модельном отделении по рабочим, чертежам изготавливают модельный комплект; в землеприготовительном — формовочную и стержневую смеси; в формовочном — литейную форму, а в стержневом — стержни; в плавильном получают жидкий металл. Готовую литейную форму заливают жидким металлом и по­сле его затвердевания в выбивном отделении удаляют из формы отливку; обрубывают литниковую систему и очищают отливку от пригара в очистном отделении. Заключительной операцией является контроль качества отливки.

Литейные свойства сплавов

Для получения отливок в машиностроении наиболее широко применяются следующие сплавы: серые, ковкие и высокопрочные чугуны; углеродистые и легированные стали; сплавы цветных ме­таллов на основе алюминия, меди, магния, титана, молибдена и дру­гих тугоплавких металлов.

Для получения качественной отливки наряду с механическими, физическими и химическими свойствами литейные сплавы должны обладать определенными технологическими свойствами, основными из которых являются жидкотекучесть, усадка, склонность к лик­вации и газопоглощению.

1. Жидкотекучесть — способность жидкого металла полностью заполнять щелевидные полости литейной формы и четко воспроиз­водить очертания отливки. При хорошей жидкотекучести металл заполняет всю полость формы, какой бы сложной она ни была, а при недостаточной — частично, образуя недоливы в узких сече­ниях отливки. Жидкотекучесть зависит от химического состава и температуры заливаемого в форму сплава. Фосфор, кремний и уг­лерод улучшают ее, а сера ухудшает. Серый чугун содержит угле­рода больше, чем сталь, и поэтому обладает лучшей жидкотекучестью. Повышение температуры жидкого металла улучшает жид­котекучесть, и чем выше его перегрев, тем более тонкостенную отливку можно получить, так как жидкотекучий металл заполняет очень узкие полости формы. Минимально возможная толщина стен­ки отливки для различных литейных сплавов (ввиду их разной жидкотекучести) неодинакова и составляет для отливок из серого чугуна: мелких 3. 4 мм, средних 8. 10 мм, крупных 12. 15 мм; для отливок из стали — соответственно 5. 7, 10. 12 и 15. 20 мм.

Жидкотекучесть металла определяют технологической пробой в виде спирали, длину которой принимают за меру жидкотекуче­сти металла. Заливая металл при различных температурах пере­грева, находят оптимальную температуру заливки формы для дан­ного сплава.

2. Усадка — уменьшение объема металла и линейных размеров отливки в процессе ее кристаллизации и охлаждения в твердом состоянии. Различают объемную и линейную усадки.

Объемная усадка сопровождается уменьшением объема металла при кристаллизации, и поэтому в массивном сечении отливки может образоваться усадочная рыхлота (пористость), или концентриро­ванная усадочная раковина, так как массивное се­чение кристаллизуется последним и в этом сечении не хватит ме­талла. Устраняют усадочную раковину установкой прибыли 2 или холодильников 3 в массивном сечении. Прибыль, имея большее сечение, кристаллизуется медленнее отливки и поэтому будет пи­тать ее жидким металлом при кристаллизации, а усадочная рако­вина перемещается в прибыль, которую отрезают.

Линейная усадка сопровож­дается уменьшением линейных размеров при охлаждении за­твердевшей отливки. Стержни и формовочная смесь оказывают сопротивление линейной усадке металла. В результате в отлив­ке возникают внутренние напря­жения, которые могут привести к короблению и даже к образо­ванию горячих окисленных тре­щин. Для уменьшения сопротивления линейной усадке формо­вочные и стержневые, смеси делают податливыми. Линейная усадка литейных сплавов различна и равна: для серого чугуна 1 %, для углеродистой стали 2 %, для цветных сплавов—1,3…1,8 %. Линейную усадку учитывают при изготов­лении модели, увеличивая ее размеры по сравнению с отливкой на линейную усадку соответствующего сплава.

3. Ликвация — неоднородность химического состава сплава по сечению отливки. Различают зональную и дендритную ликвации. Зональная ликвация создает химическую неоднородность в объеме всей отливки; дендритная — в пределах одного зерна (дендрита). Неоднородность химического состава и структуры по сечению при­водит к неоднородности механических свойств отливки. Для умень­шения ликвации увеличивают скорость охлаждения отливки.

4. Газопоглощение — способность литейных сплавов в жидком состоянии растворять кислород, азот и водород, причем их раство­римость растет с перегревом расплава. В литейной форме газонасы­щенный расплав охлаждается, понижается растворимость газов, и они, выделяясь из металла, могут образовать в отливке газовые раковины. Поэтому формовочная и стержневая смеси должны иметь хорошую газопроницаемость.

Итак, технологичные литейные сплавы должны обладать хоро­шей жидкотекучестью, малой усадкой и не ликвировать.

Материаловед

1. Литейные свойства сплавов

В производстве отливок важную роль играют литейные свойства сплавов, обеспечивающие хорошее заполнение литейной формы и получение отливок без дефектов — раковин, трещин и др. К основным литейным свойствам сплавов относятся: жидкотекучесть, заполняемость, усадка и ликвация.

Жидкотекучесть — это способность металлов и сплавов течь по каналам формы и заполнять ее.

Заполнение литейных форм является сложным гидродинамическим и физико-химическим процессом. Главным фактором, определяющим уровень жидкотекучести, являются свойства сплава в жидком состоянии: теплофизические свойства, особенности кристаллизации, вязкость, окисляемость.

Влияние литейной формы связано главным образом с ее теплофизическими свойствами, со смачиваемостью жидким металлом, с условиями физико-химического взаимодействия «металл — форма».

Читать еще:  Элементы литейной формы

На жидкотекучесть влияют условия плавки и заливки, перегрев металла, насыщение металла посторонними включениями, условия подвода металла к форме.

Например, чем выше температура заливки сплава, тем больше его жидкотекучесть. Жидкотекучесть чугуна увеличивается с увеличением содержания в нем фосфора, кремния и углерода. Сера и марганец понижают жидкотекучесть.

Количественные значения жидкотекучести определяют по длине заполнения канала литейной формы с определенной площадью поперечного сечения. Наибольшее распространение получили технологические спиральные пробы. В специальную литейную форму, имеющую спиралевидный канал, заливают испытуемый расплав. Форму изготовляют по модели стандартной пробы на жидкотекучесть. Чем более длинный участок спирали заполнит заливаемый в нее металл, тем выше его жидкотекучесть. Для удобства вычисления длины залитой спирали на ее верхней поверхности через каждые 50 мм расположены точки. Таким образом, жидкотекучесть металла определяется длиной залитой спирали, выраженной в миллиметрах или точках.

При теоретическом анализе характеристики жидкотекучести основным является определение условий остановки движущегося потока. Высказано несколько точек зрения на механизм остановки потока: выделение 20% твердой фазы, образование на конце потока прочной твердой корочки, рост в канале литейной формы дендритов (древовидных кристаллов), препятствующих движению потока, накопление твердых кристаллов на конце потока.

Течение металла в литейной форме сопровождается кристаллизацией. Поэтому движущийся поток рассматривают как гетерогенную жидкость. Из гидравлики известно, что движение таких жидкостей начинается только после того, как касательное напряжение становится больше определенного значения σ, называемого предельным напряжением сдвига.

При поступлении металла в канал литейной формы на стенках канала образуется твердая корочка из-за высокой интенсивности охлаждения металла в начальные моменты. С течением времени, по мере прогревания формы, интенсивность теплоотвода уменьшается. Но перенос теплоты к корочке за счет поступления новых порций металла остается постоянным, и она начинает оплавляться. Уменьшению размеров корочки способствует также смывание части кристаллов движущимся потоком. Накопление обломков кристаллов на конце потока приводит к постепенному нарастанию сил внутреннего трения. Условия течения металла заметно ухудшаются. Наконец в определенный момент количество накопившихся обломков становится настолько большим, а сопротивление внутреннему трению настолько значительным, что поток останавливается. Схема остановки потока металла показана на рис. 1.1.

Рис. 1.1. Схема остановки потока металла

Заполняемость характеризует способность металлов и сплавов воспроизводить контур отливок в особо тонких сечениях, где в значительной степени проявляется действие капиллярных сил.

Заполнение тонких сечений отливок — это процесс взаимодействия металла и формы. Иногда этот процесс называют формовоспроизведением или формозаполнением.

Заполняемость обусловлена рядом факторов:

1) поверхностным натяжением сплава и смачиваемостью формы;

2) вязкостью сплава, связанной с его теплофизическими свойствами;

3) температурным интервалом кристаллизации;

4) формой и размерами первичных кристаллов;

5) склонностью сплава к пленообразованию;

6) теплофизическими свойствами формы;

7) способом заливки металла;

8 ) конструктивными особенностями литниковой системы;

9) наличием газов в форме и условиями ее вентиляции.

Эффективным средством, улучшающим заполнение тонких элементов отливок, является центробежная заливка.

Усадка — это уменьшение объема сплава, залитого в форму, при его охлаждении. Уменьшение объема сплава при охлаждении до температуры затвердевания и при затвердевании называется объемной усадкой. Уменьшение линейных размеров отливки по сравнению с размерами модели называется линейной усадкой.

Значение усадки сплава в литейной форме зависит от его химического состава, конфигурации отливаемого изделия, температуры заливки в форму, скорости охлаждения в форме и других факторов. Среднее значение линейной усадки серого чугуна около 1%, стали — 2%, медных сплавов — 1,5%.

Усадка — отрицательное явление, потому что при ней изменяются объем и размеры изготовляемых отливок, она является причиной образования в отливках усадочных раковин, пористости, внутренних напряжений, вызывающих появление коробления и трещин.

Ликвация — неоднородность химического состава сплава в различных частях сечения отливки, возникающая при его кристаллизации. Наиболее заметна ликвация в массивных сечениях отливки.

Литейные свойства сплавов

Литейные сплавы и их применение

Литейные сплавы получают сплавлением двух или нескольких металлов и неметаллов. Такие сплавы должны обладать хорошей жидкотекучестью и теплопроводностью, повышенной пластичностью и др. Практическое значение литейных сплавов определяет то, что они по некоторым свойствам (прочности, твердости, способности воспроизводить очертания литейных форм, обрабатываемости режущим инструментом и др.) превосходят чистые металлы.

Важное место в литейном производстве занимают сплавы с особыми физическими свойствами (например, электропроводностью, магнитной проницаемостью и др.).

Сплавы в зависимости от химического состава отличаются друг от друга температурой плавления, химической активностью, вязкостью в расплавленном состоянии, прочностью, пластичностью и другими свойствами. Для производства фасонных отливок применяют серые, высокопрочные, ковкие и другие чугуны, углеродистые и легированные стали, сплавы алюминия, магния, меди, титана и др.

Не все сплавы в одинаковой степени пригодны для изготовления фасонных отливок. Из одних сплавов (серого чугуна, силумина) можно легко изготовить отливку сложной конфигурации, а из других (титановых сплавов, легированных сталей и др.) получение отливок сопряжено с определенными трудностями. Получение качественных отливок без раковин, трещин и других дефектов зависит от литейных свойств сплавов. К основным литейным свойствам сплавов относят жидкотекучесть, усадку сплавов, склонность к образованию трещин, газопоглощение и ликвацию.

Жидкотекучесть способность расплавленного металла течь по каналам литейной формы, заполнять ее полости и четко воспроизводить контуры отливки. При высокой жидкотекучести литейные сплавы заполняют все элементы литейной формы, при низкой — полость формы заполняется частично, в узких сечениях образуются недоливы. Жидкотекучесть сплавов определяют по специальным пробам. За меру жидкотекучести принимают длину заполненной спирали в литейной форме, и она зависит от многих факторов. Например, повышение температуры заливки увеличивает жидкотекучесть всех сплавов. Чем выше теплопроводность материала формы, тем быстрее отводится тепло от залитого металла, тем ниже жидкотекучесть.

Читать еще:  Литейные алюминиевые сплавы маркировка

Неметаллические включения снижают жидкотекучесть сплавов. На жидкотекучесть влияет химический состав сплавов: с увеличением в исходном материале содержания серы, кислорода и хрома жидкотекучесть снижается, а с повышением содержания фосфора, кремния, алюминия, углерода — увеличивается.

В зависимости от жидкотекучести сплава выбирают минимальную толщину стенок отливок. Например, при изготовлении мелких отливок из серого чугуна в песчаных формах минимальная толщина стенок составляет 3-4 мм, для средних — 8—10 мм, в для крупных — 12—15 мм; для стальных отливок, соответственно, 5—7, 10—12, 15—20 мм.

Усадка процесс уменьшения объема отливки при охлаждении, начиная с некоторой температуры жидкого металла в литейной форме до температуры окружающей среды. Усадка протекает в жидком состоянии, при затвердевании в процессе кристаллизации и в твердом состоянии. Различают линейную и объемную усадки, которые определяют в процентах. Величина усадки сплавов зависит от их химического состава, температуры заливки, конфигурации отливки и других факторов. Наименьшую линейную усадку имеет серый чугун (0,9—1,3 %) и алюминиевые сплавы — силумины (0,9—1,3 %). Стали и некоторые сплавы цветных металлов имеют усадку от 1,8 до 2,5 %. Изготовлять отливки из сплавов с повышенной усадкой сложно, так как в массивных частях отливки образуются усадочные раковины и усадочная пористость. Для предупреждения образования усадочных раковин предусматривают установку прибылей — дополнительных резервуаров с расплавленным металлом для питания отливок в процессе их затвердевания.

Напряжения в отливках возникают вследствие неравномерного их охлаждения и механического торможения усадки. Они характерны для отливок с различной толщиной стенок. При затвердевании температура отливки в массивных частях выше, чем снаружи или в тонких сечениях. Поэтому усадка в отдельных местах по величине различна, но так как части одной и той же отливки не могут изменять свои размеры независимо друг от друга, то в ней возникают напряжения, которые могут вызывать образование трещин или коробление. Для предупреждения образования больших напряжений и трещин необходимо в конструкции литой детали предусматривать равномерную толщину стенок, плавные переходы и устранять элементы, затрудняющие усадку сплава, а также использовать литейные формы и стержни повышенной податливости. Трещины довольно часто образуются в отливках из углеродистых и легированных сталей, сплавов магния и многих алюминиевых сплавов (подробнее о дефектах см. раздел 5).

Газопоглощениеспособность литейных сплавов в расплавленном состоянии растворять водород, азот, кислород и другие газы. Степень растворимости газов зависит от состояния сплава: с повышением температуры твердого сплава она увеличивается незначительно, несколько возрастает при плавлении и резко повышается при перегреве расплава. При затвердевании и последующем охлаждении растворимость газов уменьшается, и в результате их выделения в отливке могут образоваться газовые раковины и поры.

Растворимость газов зависит от химического состава сплава, температуры заливки, вязкости сплава и свойств литейной формы. Для уменьшения газонасыщенности сплавов применяют плавление в вакууме или в среде инертных газов и другие методы.

Ликвация неоднородность химического состава в различных частях отливки. Различают ликвации зональную и дендритную (внутризеренную).

Зональная ликвация — это в объеме всей затвердевшей литой детали. Дендритная химическая неоднородность — ликвация — химическая неоднородность в пределах одного зерна (дендрита) сплава. Ликвация зависит от химического состава сплава, конфигурации отливки, скорости охлаждения и других факторов.

Литейные сплавы

Наиболее распространенным литейным материалом является серый чугун, так как он обладает хорошими литейными свойствами, недефицитен и имеет невысокую стоимость. Значительно меньшая часть отливок изготавливается из высокопрочных, ковких и легированных чугунов.

Сталь имеют более высокие механические свойства по сравнению с чугунами, но она значительно дороже, а изготовление из нее отливок связано с рядом трудностей из-за ее низких литейных свойств.

Среди литейных сплавов цветных металлов наиболее широкое применение нашли медные, алюминиевые, магниевые, цинковые и титановые сплавы.

К литейным сплавам предъявляется ряд различных требований, касающихся их механических и физико-химических свойств. Но независимо от этого все литейные сплавы должны обладать определенными литейными свойствами, без учета которых даже при самом совершенном технологическом процессе литья получить качественную отливку не удается.

Литейные свойства сплавов.

Основные литейные свойства это жидкотекучесть, усадка, склонность к ликвации, поглощению газов, образованию трещин и др.

Жидкотекучесть (Ж) — способность металлов и сплавов в жидком состоянии течь по каналам литейной формы, заполнять ее полости и четко воспроизводить контуры отливки.

Жидкотекучесть зависит от природы металла, физических свойств, химического состава, температурного интервала кристаллизации, температуры заливки металла, состояния и свойств литейной формы. Чистые металлы, эвтектики, а также все сплавы, не имеющие интервала кристаллизации, обладают значительно большей жидкотекучестью по сравнению со сплавами той же системы, кристаллизующимися в интервале температур.

Повышение температуры заливки и температуры литейной формы увеличивает Ж сплавов. Увеличение теплопроводности материала формы, как и неметаллические включения в металле, снижает Ж и затрудняет продвижение его в форме.

Чем лучше отделка формы и литниковых каналов, тем быстрее и полнее форма заполняется расплавом.

Читать еще:  Современные литейные технологии сайт

В практике литейного производства Ж оценивают с помощью специальных спиральных проб, которые заливают расплавленным металлом. Длина заполненной части спирали и служит мерой Ж, которая измеряется в миллиметрах.

Усадка — это свойство литейных сплавов уменьшаться в объеме и линейных размерах при затвердевании и охлаждении. Усадочные процессы в отливках протекают с момента заливки расплавленного металла в литейную форму вплоть до полного охлаждения отливки. На величину усадки влияют, прежде всего, природа металла, химический состав сплава, температура заливки и свойства литейной формы. С повышением температуры заливаемого металла усадка увеличивается. Усадку принято делить на объемную и линейную.

Объемная усадка — это уменьшение объема сплава при его охлаждении в литейной форме. Объемная усадка приводит к образованию в отливках усадочных раковин и рассеянной усадочной пористости.

Усадочные раковины — это сравнительно крупные полости, расположенные в местах отливки, затвердевающих последними (рис. 2.2, а). Усадочная пористость — рассредоточенное скопление пустот, образовавшихся в отливке в результате усадки без доступа к ним расплавленного металла (рис. 2.2, б).

При кристаллизации чистых металлов, сплавов, соответствующих по составу эвтектикам, и сплавов с узким интервалом кристаллизации затвердевание отливки происходит послойно, начиная от стенок формы и постепенно передвигаясь в глубь тела отливки. Усадка затвердевшей части восполняется за счет еще не затвердевшей части отливки, уровень металла в которой постепенно (уровни а—а, б—б) понижается до тех пор, пока не закончится процесс затвердевания, по завершении которого появится сосредоточенная усадочная раковина 1.

Если в отливке имеются различные по толщине части, то в первую очередь затвердевает самая тонкая часть. Образующаяся в ней усадочная пустота заполняется жидким металлом 6 из соседней части, которая охлаждается медленнее и в которой образуется усадочная раковина.

Для предотвращения образования усадочной раковины в литейной форме предусматривают установку прибыли, размеры и форму которой подбирают так, чтобы она затвердевала в последнюю очередь, т.е. прибыль должна быть массивнее самой толстой части отливки.

Рис. 2.2. Схема образования усадочной раковины и усадочной пористости:

а — образование усадочной раковины; б — образование усадочной пористости; 1 — сосредоточенная усадочная раковина; 2—4 — последовательно образующиеся слои; 5 — расплав; б — изолированные области;

7 — пористость; а—а, б—б — уровни застывшего металла

У сплавов с интервалом кристаллизации в средней части отливок возникает усадочная пористость 7, располагающаяся по границам зерен металла.

Для получения отливок без усадочных раковин и пористости необходимо обеспечить непрерывный подвод расплавленного металла в течение всего периода кристаллизации и охлаждения отливки и обеспечить выравнивание скоростей затвердевания различных ее сечений.

Линейная усадка — это уменьшение линейных размеров отливки при ее охлаждении от температуры заливки до температуры окружающей среды.

Отливка по своим линейным размерам всегда меньше полости формы, в которой она получена. Эта разница называется абсолютной линейной усадкой. Относительной линейной усадкой называют отношение абсолютной линейной усадки к линейным размерам отливки после полного охлаждения. Линейную усадку определяют соотношением

где /ф и /от — размеры полости формы и отливки при температуре 20°С, мм.

Поскольку линейная усадка в отливках практически никогда не бывает свободной, а всегда в той или иной степени затруднена, в отливках возникают упругие и пластические деформации. Внешние, более остывшие слои отливки, затрудняют усадку внутренних горячих слоев, в результате чего внутренние слои будут пластически растянуты, а наружные — упруго сжаты, что приведет к образованию внутренних напряжений. Если величина напряжений превысит предел текучести, то возможно искривление — коробление отливки. Если же величина напряжений превысит величину предела прочности материала, то появятся трещины.

В зависимости от того, в какой период образовались трещины, различают трещины горячие и холодные. Горячие трещины появляются при температуре, близкой к температуре затвердевания сплавов, когда они имеют очень низкую прочность. Поверхность трещины будет темной, окисленной. Холодные трещины возникают в области упругих деформаций, когда сплав полностью затвердел. Холодные трещины образуются в отливках, имеющих большую разницу в толщине тонких и массивных частей, т.е. охлаждающихся неравномерно Поверхность металла в зоне трещины будет неокисленной, так как она образовалась в холодном металле.

Ликвация — неоднородность химического состава сплава в различных частях отливки. На склонность сплава к ликвации влияют химический состав сплава, интервал кристаллизации, скорость охлаждения отливки и т.д. Различают два основных вида ликвации: дендритную и зональную. Дендритная ликвация характеризуется наличием химической неоднородности в пределах одного зерна сплава, она тем заметнее, чем больше скорость затвердевания сплава в форме. Зональная ликвация проявляется в неоднородности структуры и состава в различных частях отливки. Зональная ликвация наиболее опасна, так как ее нельзя устранить термической обработкой. Разновидностью зональной ликвации является ликвация по удельному весу.

Газонасыщение металла происходит из топлива, шихтовых материалов, окружающей среды и из литейной формы, которая при заполнении ее жидким металлом выделяет газы. Газы могут находиться в металле в свободном состоянии или растворяться в нем, образуя оксиды, гидриды, нитриды. Растворенные в металле газы ухудшают его механические свойства и способствуют образованию литейных дефектов — газовых раковин.

Таким образом, литейные свойства являются определяющими при конструировании литой детали, выборе материала и способа получения отливки. Без учета их даже при самом совершенном технологическом процессе литья получить отливку без литейных дефектов невозможно.

Ссылка на основную публикацию
Adblock
detector