Литейные алюминиевые сплавы маркировка
Статьи
Термины и определения, принятые в зарубежных стандартах на алюминиевые литейные
Термины и определения, принятые в зарубежных стандартах на алюминиевые литейные сплавы; маркировка сплавов
Сплав — металлическое вещество, которое состоит из смеси основного металла (металлического элемента) и примесей (EN1676).
Легирующий элемент — металлический или неметаллический элемент, который вводят в основной металл или который в нем содержится. Его массовая доля должна находиться в определенных пределах, чтобы придать металлу определенные свойства (EN1676). Легирующим элементом является любой элемент, вводимый с любой целью, кроме измельчения зерна, с указанием минимального и максимального пределов содержания (ASTM В108).
Примесь — металлический или неметаллический элемент, который находится в основном металле в результате его получения и не добавляется в него и для которого не установлена нижняя граница его содержания (EN1676).
Литейный сплав — сплав, который предназначен для изготовления литых деталей (EN1676).
Чушка (слиток) — металл, получаемый отливкой в специальную форму и предназначенный для последующей переплавки. Перед отливкой чушек проводятся плавка-и рафинирование расплава для получения определенного химического состава и снижения металлических и неметаллических примесей (EN1676).
Плавка (расплав для отливки) — количество жидкого металла, которое перед началом отливки обработано и подготовлено в печи (EN1676).
Литая деталь — определенное понятие для изделия готового или почти готового, полученного в результате заливки расплавленного металла в форму (EN1676).
Отливка под давлением — металлический предмет, полученный при подаче расплавленного металла под значительным давлением в литейную прессформу и характеризующийся высокой степенью близости размеров к готовому изделию (ASTM B85).
Кокильная отливка — металлический предмет, полученный подачей расплавленного металла в металлическую форму (ASTM В108).
Полукокильная отливка — кокильная отливка, которая произведена с использованием в качестве стержня такого разового заполнителя, как песок (ASTM В108).
В России по ГОСТ 1573-93 алюминиевые литейные сплавы маркируются буквами [первая буква А — алюминий (основа сплава); буквы, следующие за ней, обозначают легирующий элемент. цифра — его среднее содержание].
После обозначения марок некоторых сплавов вводится показатель их степени чистоты: ч — чистый, пч — повышенной чистоты; оч — особой чистоты, р — рафинированный.
Маркировка алюминиевых литейных сплавов в чушках по ГОСТ 1573-93.
На каждой чушке должны быть нанесены:
товарный знак или наименование; товарный знак предприятия-изготовителя, номер плавки и маркировка сплава;
по соглашению с потребителем для крупногабаритных чушек массой более 200 кг несмываемой краской масса чушки в килограммах; номер плавки, товарный знак или наименование и товарный знак предприятия-изготовителя на 80% чушек при условии формирования пакета из чушек одной плавки.
Чушки, предназначенные для изготовления изделий и оборудования, контактирующих с пищевыми продуктами, маркируются при отсутствии цветной маркировки дополнительной буквой П. которая ставится после обозначения марки сплава.
Чушки на торце маркируют несмываемой цветной краской (вертикальные полосы, кресты, треугольники) или металлическим клеймом на поверхности чушки:
Классификация и маркировка сплавов алюминия
В промышленности алюминий используется как в чистом виде, так и в виде различных сплавов. Маркировка алюминия начинается с буквы А, затем идет цифра, указывающая содержание алюминия в сотых долях процента. Например, алюминий марки А97 содержит алюминия 99,97 %, остальное – контролируемые примеси [14].
Постоянные примеси алюминия – Fe, Si, Cu, Zn и Ti. В зависимости от содержания примесей первичный алюминий подразделяют на три класса:
1) особой чистоты марки А999;
2) химически чистый марок А995, А99, А97, А95;
3) технически чистый марок А85, А8, А7, А6, А5, А0 и А.
В электротехнике применяют алюминий марок А7Е, А6Е, А5Е и АЕ, где буква Е указывает на его электротехническое назначение. Технический алюминий, выпускаемый в виде деформируемого полуфабриката (листы, профили, прутки и др.) маркируют АД0 и АД1. Алюминиевую проволоку, в зависимости от исходных механических свойств, выпускают нескольких сортов, которые маркируют АТП, АТ, АПТ и АМ – соответственно твердая повышенной прочности, твердая, полутвердая и мягкая.
Ввиду низкой прочности и незначительной упрочняемости при холодной пластической деформации чистый алюминий как конструкционный материал применяют сравнительно редко. Более широко используют сплавы алюминия, которые характеризуются высокой удельной прочностью, способностью сопротивляться статическим и динамическим нагрузкам, в том числе и при повышенных температурах, отличаются хорошей технологичностью. Классификация наиболее известных алюминиевых сплавов приведена на рис.3.2.
Рис.3.2. Классификация сплавов на основе алюминия
Основными легирующими элементами алюминиевых сплавов являются Cu, Mg, si, Mn, Zn, реже Li, Ni, Ti [15]. Такие элементы, как Cu, Zn, Mg, Ni, Fe и Mn участвуют в формировании прочностных свойств, причем Mn одновременно повышает коррозионную стойкость. Кремний является основным легирующим элементов в ряде литейных сплавов (силуминов), поскольку он участвует в образовании эвтектики. Подобные элементы, как Ni, Ti, Cr, Fe повышают жаропрочность сплавов, затормаживая процессы диффузии и образуя стабильные сложнолегированные упрочняющие фазы. Литий в сплавах способствует возрастанию их модуля упругости. Магний и марганец снижают тепло- и электропроводность алюминия, а железо – его коррозионную стойкость. Алюминиевые сплавы можно условно разделить на конструкционные и электротехнические.
Маркировка конструкционных алюминиевых сплавов. В настоящее время одновременно действуют две маркировки сплавов: старая буквенно-цифровая (табл 3.2.) и новая цифровая (рис.3.3.).
Буквенно-цифровая маркировка алюминиевых сплавов
* Буква П, входящая в маркировку сплава, указывает на то, что сплав проволочный
Разные организации, присваивая буквенно-цифровые марки сплавам, руководствовались разными принципами. Есть марки, которые характеризуют состав сплава, например Амг2 (алюминий + 2% магния), Амц (алюминий + 1% марганца). Другие марки отражают технологию получения изделий: АЛ2, АЛ4, АЛ7, где буквы Ал показывают, что сплав алюминиевый литейный, а цифры после букв – порядковые номера сплавов, не несущие никакой полезной информации о сплаве; АК4, АК6 – алюминиевые сплавы для ковки. В марках многих сплавов отражена организация – разработчик: ВАЛ8, ВАЛ10, ВАЛ14 – литейные сплавы, разработанные в ВИАМе (Всесоюзный институт авиационных материалов), ВАД1, ВАД3 – деформируемые сплавы, разработанные в ВИАМе.
.начиная с 1970 г. для маркировки любых алюминиевых сплавов была введена единая цифровая система [13]. В соответствии с цифровой маркировкой первая цифра показывает основу сплава (для алюминия 1), вторая цифра обозначает систему легирования (показывает основные легирующие компоненты), третья и четвертая цифры – порядковый номер сплава и технологию получения изделий.
Порядковый номер сплава
Основные легирующие элементы
Рис. 3.3. Принципы цифровой маркировки алюминиевых сплавов
При этом для деформируемых сплавов последняя цифра должна быть 0 или нечетная цифра, а для литейных – нечетная цифра. Таким образом, главная информация о составе сплава определяется второй цифрой марки. Для цифр, стоящих в марке на втором месте, приняты следующие обозначения:
· 0 – легирующих элементов нет, есть только примеси, т.е. обозначение разных сортов технического алюминия;
· 1 – сплавы систем Al-cu-Mg и al-Mg-Fe-Ni;
· 2 – сплавы систем Al-cu-Mn и al-Li-Cd-Mn;
· 3 – сплавы систем Al-Mg-Si и Al-Mg-Si-Cu;
· 4 – сплавы, легированные Li, а также малорастворимыми в алюминии компонентами Mn, Cr, Zr, Ni, Be и др;
· 5 – сплавы системы Al-Mg;
· 9 – сплавы системы Al-Zn-Mg и Al-Zn-Mg-Cu.
Цифры 6, 7 и 8 (на втором месте) для маркировки алюминиевых сплавов пока не используются. Примеры обозначения сплавов с помощью буквенно-цифровой и цифровой маркировок приведены в табл. 3.3. Цифровая маркировка всеобщего распространения не получила и используется преимущественно для обозначения деформируемых алюминиевых сплавов нового поколения. Для литейных алюминиевых сплавов цифровая маркировка вообще не нашла применение. Для них разработана и введена единая система буквено-цифровой маркировки [16]. Эта система аналогична применяемой для сталей, однако обозначения химических элементов имеет свои особенности (таблица 3.4.).
Примеры маркировок алюминиевых сплавов
В результате марку сплава записывают следующим образом: первая буква, А, показывает алюминий, последующие буквы – основные легирующие элементы, а числа, стоящие после букв, показывают среднее содержание данного компонента в процентах по массе.
Условные обозначения легирующих элементов
в марках алюминиевых сплавов
Если содержание компонента меньше единицы, буква обозначающая данный компонент в марке обычно не указывается.
Примеры записи марок литейных алюминиевых сплавов выглядят следующим образом: АК5М,АК12М2МгН, АМг5Мц, Ац4Мг, АК21М2, 5Н2,5.
Буквы Ч (чистый) или ОЧ (особой чистоты) ставятся в конце маркировке и указывают на повышенную чистоту сплавов по примесям железа и кремния.
Наряду с рассмотренными системами маркировок алюминиевых сплавов имеется буквенно-цифровая маркировка технологической обработки полуфабрикатов и изделий, качественно отражающая механические, химические и другие свойства сплава (табл. 3.5).
Буквенно-цифровая маркировка технологической обработки
деформируемых и литейных сплавов
Маркировка электротехнических алюминиевых сплавов. Для этих сплавов действует буквенно-цифровая система маркировки [17].
Для изготовления холоднотянутой электротехнической проволоки используют алюминий марки АД1 и алюминиевые деформируемые сплавы марок Амц, Амг2, АМг5П, Д1П, Д16П, Д18 и в65, где А обозначает алюминий, Д – деформируемый сплав, Мц – Марганец, Мг – магний, П – сплав холодной высадки (разновидность обработки давлением), В – высокопрочный деформируемый сплав. Цифра, стоящая за обозначением элемента, показывает его содержание в процентах.
Из электротехнических сплавов системы Al-Mg-Si-Fe наиболее известен сплав альдрей(АВ), который используют для производства контактных проводов.
3.3. Классификация и маркировка сплавов титана.
В промышленности титан используется как в чистом виде, так и в виде различных сплавов. Маркируют технический титан буквами ВТ, за которыми сразу стоит цифра 1 (ВТ1). Далее через черточку ставится цифра, характеризующая чистоту технического титана. Контролируемыми примесями в титане являются следующие элементы: Fe, Si, C, Cl, N2 и O2. Если содержание примесей в сумме менее 0,10 %, то такой титан относят к самому чистому (иодидному) и маркируют ВТ1-00. Далее по степени чистоты (по убывающей) выделяют следующие сорта технического титана ВТ1-0, ВТ1-1 и ВТ1-2 [18].
Классификация основных сплавов титана приведена на рис.3.4. Как любая классификация, она не может считаться полной, так как титановые
сплавы классифицируют часто по структуре, по составу, по склонности к упрочнению, по прочности и т.д. В ряде случаев применяют классификацию по элементам — стабилизаторам соответствующих фаз. Однако все эти классификации весьма сложные и имеют ограниченное ведомственное применение.
Рис.3.4. Классификация сплавов на основе титана
В маркировке сплавов титана какие-либо специальные системообразующие символы отсутствуют. Все промышленные деформируемые сплавы титана маркируют двумя буквами ВТ, ОТ, ПТ и АТ за которыми сразу без пропуска следует цифра, обозначающая порядковый номер сплава и не дающая о нем никакой полезной информации. Примеры записи марок деформируемых титановых сплавов выглядят следующим образом: ВТ3, ВТ6,ПТ7,ОТ4,АТ6,ВТ22,ВТ35.
Литейные сплавы титана по составу аналогичные деформируемым. Для них в конце марки сплава пишется буква Л, например: ВТ1Л,ВТ5Л, ВТ21Л.
Для того, чтобы узнать химический состав титанового сплава и определить его структурную принадлежность, необходимо обратиться к специальной справочной литературе, где приводятся данные обо всех известных сплавах титана.
Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначенные для поддерживания проводов на необходимой высоте над землей, водой.
Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.
Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.
Литейные алюминиевые сплавы
В последнее время достаточно большое распространение получили алюминиевые сплавы. Это связано с тем, что они обладают исключительными эксплуатационными качествами. Существует просто огромное количество различных видов алюминия, классификация зависит от химического состава и многих других показателей. Довольно большое распространение получили литейные алюминиевые сплавы. Они могут применяться для изготовления самых различных деталей, в большинстве случаев, корпусов. Рассмотрим особенности литейных алюминиевых сплавов подробнее.
Общая характеристика и свойства
Существует довольно большое количество разновидностей литейных алюминиевых сплавов, каждый из которых обладает своими особенностями. Алюминиевый литейный сплав характеризуется следующими эксплуатационными качествами:
- Высокие литейные качества. Подобный металл довольно часто применяется для литья по форме. Высокие литейные качества позволяют создавать детали сложной формы.
- Плотность. Химический состав алюминиевых литейных сплавов определяет то, что их плотность относительно невелика. За счет этого вес получаемой конструкции относительно небольшой.
- Коррозионная стойкость также высокая. Она может снижаться за счет добавления различных легирующих элементов.
- Рассматривая свойства сплавов следует отметить и повышенную прочность, а также твердость. Эти качества достигаются путем добавления самых различных веществ.
- Высокая степень обрабатываемости. Путем литья достаточно часто получают заготовки, которые в дальнейшем доводят до готового состояния путем механической обработки на фрезерном или другом оборудовании.
Подобные материалы обладают хорошими литейными свойствами, что позволяет получать детали со сложными поверхностями. Сплавы с высоким содержанием магния или других легирующих элементов могут подвергаться дополнительной термообработке.
В большинстве случаев к данному материалу предъявляют следующие требования:
- Хорошие литейные свойства. Именно они считаются наиболее важными при рассмотрении алюминиевых сплавов данной группы. Чем менее выражены литейные качества, тем хуже раствор заполняет созданную форму. Литейные свойства могут определяться самыми различными методами.
- Небольшая усадка. Процесс усадки практически неизбежен при литье по форме. Однако некоторые составы более склонны к образованию раковин и других дефектов при литье, другие меньше. Чем меньше усадка, тем более качественным получается изделие.
- Высокая жидкотекучесть. Если созданная форма для литья имеет большое количество сложных поверхностей, то для их заполнения состав должен обладать повышенным показателем жидкотекучести.
- Малая склонность к образованию горячих трещин. При выполнении литейных операций возникает вероятность появления трещин, которые снижают прочность структуры и эксплуатационные качества материала.
- Низкая склонность к пористости. Пористая структура обладает менее привлекательными эксплуатационными качествами, так как она имеет меньшею прочность, впитывает влагу и может быть подвержена воздействию коррозии.
- Оптимальные механические и химические свойства. Современные методы легирования позволяют сделать легкий материал более прочным. Для этого проводится добавление самых различных компонентов. Оптимальные механические свойства представлены сочетанием легкости и прочности, а также другими качествами.
- Мелкозернистая однородная структура. При рассмотрении особенностей структуры получаемых изделий следует отметить, что однородная лучше воспринимает оказываемые нагрузки и вероятность появления дефектов существенно снижается. Неоднородную структуру можно охарактеризовать тем, что изделие может иметь разный показатель твердости поверхности, на одной части может появляться коррозия, другая может оказаться быть более устойчивой к подобному воздействию.
Исключить вероятность образования многих дефектов можно путем соблюдения технологии отливки и обработки полученного сплава. Кроме этого, используемый состав также в той или иной степени определяет вероятность образования дефектов.
Литейные алюминиевые сплавы в чушках
Наиболее важным качеством можно назвать жидкотекучесть. Она определяет способность заполнения литейной формы. Кроме этого уделяют внимание тому, какова склонность состава к образованию газовых и усадочных пустот. Измеряется показатель жидкотекучести тем, какая емкость и за какое время может заполниться. Стоит учитывать, что повышенное содержание оксидов становится причиной снижения показателя жидкотекучести.
Процесс литья также определяет высокую вероятность образования усадочных раковин. При охлаждении расплав уменьшается в объеме. Выделяют два основных типа образующейся раковины:
Для определения степени усадки используются различные методы.
При литье также часто встречается деформация, которая становится причиной образования трещин. Она связана с процессом, который определяется сжимающим напряжением между уже затвердевшим и кашеобразным составом.
Различают несколько разновидностей алюминиевых литейных сплавов, о которых далее поговорим подробнее.
Виды литейных алюминиевых сплавов
Все литейные сплавы алюминия можно условно разделить на несколько основных групп:
- Высокопрочные и жаропрочные сплавы. Наиболее распространенным материалом из этой группы можно назвать алюминиевый сплав АЛ19. Его легируют путем добавления титана, за счет чего придаются более высокие механические свойства. Добавление легирующих элементов может проводится при низких или комнатных температурах. Жаропрочность определяет то, что механические свойства и линейные размеры остаются неизменными даже при нагреве состава до температуры 350 градусов Цельсия. Сплавы этой группы хорошо свариваются, а также обладают высокой обрабатываемостью. Стоит учитывать, что за счет легирования коррозионная стойкость относительно невысокая. Существенно повысить прочность можно путем закалки или старения. Подобные марки литейных алюминиевых сплавов широко используются при литье крупногабаритных отливок по песчаной форме.
- Конструкционные герметичные алюминиевый сплав обладают более высокими литейными свойствами. Распространенные марки: АЛ4 и АЛ9. Также следует отметить достаточно высокую коррозионную стойкость. Стоит учитывать тот момент, что термическая обработка в этом случае не проводится. При закалке или старении эксплуатационные качества не улучшаются. Хороший комплекс технологических свойств определяет популярность алюминиевого сплава.
- Коррозионностойкие металлы. К данной группе относится маркировка АЛ27 и АЛ8. Следует учитывать, что подобный тип металла обладает высокой стойкостью к воздействию повышенной влажности. Высокая коррозионная стойкость во многих агрессивных средствах существенно расширяет область применения металла. Кроме этого, структура определяет хорошую свариваемость и обрабатываемость резанием. Однако отметим, что металл обладает низкой жаропрочностью – структура не может выдержать воздействие температуры выше 80 градусов Цельсия. За счет легирования снижаются и литейные свойства. Исключением можно назвать сплав АЛ24, основные свойства которого сохраняются при температуре до 150 градусов Цельсия.
Последняя группа сплавов получила достаточно широкое распространение при изготовлении корпусов и деталей, на которые оказывается воздействие морской воды. Из-за высокой концентрации соли на поверхности довольно часто образуется коррозия.
К литейным сплавам принято относить составы, в которых есть от 10 до 13% кремния. Довольно часто в состав добавляются магний, медь и другие присадки, способные существенно повысить прочность. Также в состав добавляют титан и цирконий. В свою очередь, марганец может существенно повысить антикоррозионные свойства.
Несмотря на то, что в большинстве случаев железо и никель считаются вредными примесями, в данном случае они добавляются для существенного повышения жаропрочности.
Рассматривая маркировку отметим, что для этого применяется обозначение от АЛ2 до АЛ20. Эти материалы сегодня еще называют силуминами. Их химический состав, от которого зависят механические качества, может существенно отличаться. Именно поэтому следует подробно рассматривать состав каждой марки.
Применение
Алюминиевый литейный сплав сегодня применяется при производстве фасонных отливок. Отметим, что разделают как чистый алюминий, так и полученный после вторичной переработки. В химической и пищевой промышленности может использоваться чистый алюминий. Этот материал применим и в электротехнике. Важным моментом является то, что на алюминий приходится более 20% литейных сплавов.
Детали из литейных алюминиевых сплавов
Рассматривая особенности производства отметим, что первичный металл производится в чушках на специализированных алюминиевых заводах. Есть и вторичная цветная металлургия, которая предусматривает применение вторичного лома или отходов. За счет применения менее дорого сырья существенно снижается стоимость материалов.
В России только 50% заводов проводит использование лома в качестве основы. В более развитых странах мира, к примеру, США, Японии, Германии сегодня при производстве алюминиевых сплавов вторичное сырье применяется не менее чем в 90%. За счет этого существенно снижается стоимость различных изделий, а также повышается экологическая чистота.
Применение литейного алюминия весьма обширно:
- Изготовление корпусных деталей. Именно при производстве корпусных деталей чаще всего применяют литейные алюминиевые сплавы. Это связано с тем, что подобным образом существенно снижается их стоимость. Для получения сложных изделий из стандартной заготовки применяют современное фрезерное оборудование, которое стоит дорого и требует соответствующей оснастки.
- Получение различных заготовок в сфере кораблестроения и авиастроения. На протяжение нескольких столетий алюминий используется для изготовления деталей, которые применяются при сборе самолетов и различных летательных аппаратов.
- Изготовление деталей сложной формы и различных размеров. Детали, представленные телами вращения и плоскими поверхностями сложны в изготовлении при применении оборудования по механической обработке.
- Получение элементов, которые применяются для осуществления подачи электричества. При добавлении легирующих элементов получаются сплавы, обладающие хорошими токопроводящими способностями.
Очень большое количество деталей в моторостроении получается также путем литья. Данный метод изготовления позволяет получить детали с высокоточными размерами и качественной поверхностью.
В заключение отметим, что сегодня данный тип металла получил широкое применение в самых различных областях промышленности. Это также можно связать с тем, что стоимость производства подобного металла относительно невысока. Сочетание высоких эксплуатационных качеств с низкой стоимостью и определяют широкое распространение металла в самых различных отраслях промышленности.
Алюминий и его сплавы: характеристика, свойства, применение
Алюминий — серебристо-белый легкий парамагнитный металл. Впервые получен физиком из Дании Гансом Эрстедом в 1825 году. В периодической системе Д. И. Менделеева имеет номер 13 и символ Al, атомная масса равна 26,98.
Производство алюминия
Для производства алюминия используют бокситы — это горная порода, которая содержит гидраты оксида алюминия. Мировые запасы бокситов почти не ограничены и несоизмеримы с динамикой спроса.
Боксит дробят, измельчают и сушат. Получившуюся массу сначала нагревают паром, а затем обрабатывают щелочью — в щелочной раствор переходит большая часть оксида алюминия. После этого раствор длительно перемешивают. На этапе электролиза глинозем подвергают воздействию электрического тока силой до 400 кА. Это позволяет разрушить связь между атомами кислорода и алюминия, в результате чего остается только жидкий металл. После этого алюминий отливают в слитки или добавляют к нему различные элементы для создания алюминиевых сплавов.
Алюминиевые сплавы
Наиболее распространенные элементы в составе алюминиевых сплавов — медь, марганец, магний, цинк и кремний. Реже встречаются сплавы с титаном, бериллием, цирконием и литием.
Алюминиевые сплавы условно разделяют на две группы: литейные и деформируемые.
Для изготовления литейных сплавов расплавленный алюминий заливают в литейную форму, которая соответствует конфигурации получаемого изделия. Эти сплавы часто содержат значительные примеси кремния для улучшения литейных свойств.
Деформируемые сплавы сначала разливают в слитки, а затем придают им нужную форму.
Происходит это несколькими способами в зависимости от вида продукта:
- Прокаткой, если необходимо получить листы и фольгу.
- Прессованием, если нужно получить профили, трубы и прутки.
- Формовкой, чтобы получить сложные формы полуфабрикатов.
- Ковкой, если требуется получить сложные формы с повышенными механическими свойствами.
Марки алюминиевых сплавов
Для маркировки алюминиевых сплавов согласно ГОСТ 4784-97 пользуются буквенно-цифровой системой, в которой:
- А — технический алюминий;
- Д — дюралюминий;
- АК — алюминиевый сплав, ковкий;
- АВ — авиаль;
- В — высокопрочный алюминиевый сплав;
- АЛ — литейный алюминиевый сплав;
- АМг — алюминиево-магниевый сплав;
- АМц — алюминиево-марганцевый сплав;
- САП — спеченные алюминиевые порошки;
- САС — спеченные алюминиевые сплавы.
После первого набора символов указывается номер марки сплава, а следом за номером — буква, которая обозначает его состояние:
- М — сплав после отжига (мягкий);
- Т — после закалки и естественного старения;
- А — плакированный (нанесен чистый слой алюминия);
- Н — нагартованный;
- П — полунагартованный.
Виды и свойства алюминиевых сплавов
Алюминиево-магниевые сплавы
Эти пластичные сплавы обладают хорошей свариваемостью, коррозийной стойкостью и высоким уровнем усталостной прочности.
В алюминиево-магниевых сплавах содержится до 6% магния. Чем выше его содержание, тем прочнее сплав. Повышение концентрации магния на каждый процент увеличивает предел прочности примерно на 30 МПа, а предел текучести — примерно на 20 МПа. При подобных условиях уменьшается относительное удлинение, но незначительно, оставаясь в пределах 30–35%. Однако при содержании магния свыше 6% механическая структура сплава в нагартованном состоянии приобретает нестабильных характер, ухудшается коррозийная стойкость.
Для улучшения прочности в сплавы добавляют хром, марганец, титан, кремний или ванадий. Примеси меди и железа, напротив, негативно влияют на сплавы этого вида — снижают свариваемость и коррозионную стойкость.
Алюминиево-марганцевые сплавы
Это прочные и пластичные сплавы, которые обладают высоким уровнем коррозионной стойкости и хорошей свариваемостью.
Для получения мелкозернистой структуры сплавы этого вида легируют титаном, а для сохранения стабильности в нагартованном состоянии добавляют марганец. Основные примеси в сплавах вида Al-Mn — железо и кремний.
Сплавы алюминий-медь-кремний
Сплавы этого вида также называют алькусинами. Из-за высоких технических свойств их используют во втулочных подшипниках, а также при изготовлении блоков цилиндров. Обладают высокой твердостью поверхности, поэтому плохо прирабатываются.
Алюминиево-медные сплавы
Механические свойства сплавов этого вида в термоупрочненном состоянии порой превышают даже механические свойства некоторых низкоуглеродистых сталей. Их главный недостаток — невысокая коррозионная стойкость, потому эти сплавы обрабатывают поверхностными защитными покрытиями.
Алюминиево-медные сплавы легируют марганцем, кремнием, железом и магнием. Последний оказывает наибольшее влияние на свойства сплава: легирование магнием значительно повышает предел текучести и прочности. Добавление железа и никеля в сплав повышает его жаропрочность, кремния — способность к искусственному старению.
Алюминий-кремниевые сплавы
Сплавы этого вида иначе называют силуминами. Некоторые из них модифицируют добавками натрия или лития: наличие буквально 0,05% лития или 0,1% натрия увеличивает содержание кремния в эвтектическом сплаве с 12% до 14%. Сплавы применяются для декоративного литья, изготовления корпусов механизмов и элементов бытовых приборов, поскольку обладают хорошими литейными свойствами.
Сплавы алюминий-цинк-магний
Прочные и хорошо обрабатываемые. Типичный пример высокопрочного сплава этого вида — В95. Подобная прочность объясняется высокой растворимостью цинка и магния при температуре плавления до 70% и до 17,4% соответственно. При охлаждении растворимость элементов заметно снижается.
Основной недостаток этих сплавов — низкую коррозионную стойкость во время механического напряжения — исправляет легирование медью.
Авиаль
Авиаль — группа сплавов системы алюминий-магний-кремний с незначительными добавлениями иных элементов (Mn, Cr, Cu). Название образовано от сокращения словосочетания «авиационный алюминий».
Применять авиаль стали после открытия Д. Хансоном и М. Гейлером эффекта искусственного состаривания и термического упрочнения этой группы сплавов за счет выделения Mg2Si.
Эти сплавы отличаются высокой пластичностью и удовлетворительной коррозионной стойкостью. Из авиаля изготавливают кованые и штампованные детали сложной формы. Например, лонжероны лопастей винтов вертолетов. Для повышения коррозионной стойкости содержание меди иногда снижают до 0,1%.
Также сплав активно используют для замены нержавеющей стали в корпусах мобильных телефонов.
Физические свойства
- Плотность — 2712 кг/м 3 .
- Температура плавления — от 658°C до 660°C.
- Удельная теплота плавления — 390 кДж/кг.
- Температура кипения — 2500 °C.
- Удельная теплота испарения — 10,53 МДж/кг.
- Удельная теплоемкость — 897 Дж/кг·K.
- Электропроводность — 37·10 6 См/м.
- Теплопроводность — 203,5 Вт/(м·К).