Литейное производство алюминия
Алюминиевое литье
Алюминиевое литье под давлением в ООО «НТЦ-БУЛАТ»
Ниже можно ознакомиться с некоторыми образцами продукции, изготовленными в ООО «НТЦ-БУЛАТ» методом литья алюминия под давлением. Вы сможете лично убедиться в качестве производимой продукции и возможностях, которые предоставляет всем заказчикам компания ООО «НТЦ-БУЛАТ».
4 факта об изготовлении изделий ООО «НТЦ-БУЛАТ»
- Наша производственная база расположена в одном месте в Москве (рядом с метро «Шоссе Энтузиастов»). Цехи, участки, офис и склад располагаются в «шаговой доступности» друг от друга.
- Никаких отклонений от чертежа! Все изделия на 100% соответствуют чертежам, утвержденным заказчиком перед началом производства. Нами даётся гарантия соответствия.
- Вам не нужно переживать за качество конечного продукта. Характеристики изготавливаемых деталей и изделий соответствует государственным стандартам ГОСТ 26645 и ГОСТ 1583.
- Мы можем изготовить любую, даже самую сложную по конструкции и самую крупную по объему партию деталей. Наше предприятие располагает свободными мощностями и может изготавливать до 30 тонн продукции в месяц.
Литьё под давлением алюминиевых сплавов — какие сплавы лучше?
1. Сплав АК12 , называемый также силумин, — это смесь алюминия с кремнием, в которую добавляется небольшое количество магния (до 0,5%). Сплав является одним из самых твердых из всего многообразия сплавов на основе алюминия. Также он характеризуется низкой литейной усадкой и герметичностью. Широко применяется для литья под давлением благодаря тому, что не дает трещин в процессе остывания отливок. Используется для производства деталей, работающих под небольшой нагрузкой.
2. Алюминиевый сплав АК12М2 производится добавлением в расплавленный алюминий небольшого количества кремния (от 11 до 13%), меди (1,8-2%) и железа (0,6-0,9%, в основном для того, чтобы отливка лучше отделялась от формы). Применяется, в основном, для изготовления фасонного литья.
3. Сплав АК9 производится смешиванием алюминия с кремнием (85-90% + 8-11%) и добавлением небольшого количества добавок: никеля (до 0,3%), меди (до 1%) и цинка (до 0,5%). Сплав характеризуется высокой прочностью, однако не отличается пластичностью. Он используется для производства деталей самолетов, элементов сложных приборов и других заготовок, способных выдерживать высокие нагрузки, но не подвергающихся повышенным вибрациям.
4. Алюминиевый сплав АК9М2 благодаря удачному соотношению алюминия, кремния и меди отличается наиболее сбалансированным соотношением твердости к пластичности. Благодаря своим физическим свойствам, сплав активно применяется для производства ненагруженных деталей, корпусов и деталей для различных приборов. Может подвергаться искусственному старению и закалке.
5. Сплав АК5М2 считается одним из самых популярных в системе алюминий-кремний-медь. Он отличается не только высокой прочностью и относительной пластичностью, но и дешевизной. Применяется данный сплав для «неответственного литья»: производства алюминиевой посуды, фасонных отливок, ненагруженных деталей и т.д.
Литье алюминия под давлением – это быстрый и относительно недорогой способ получить большие партии заготовок и деталей для автомобильной, машиностроительной, медицинской, светотехнической, энергетической, пищевой промышленности и др. В зависимости от конкретных задач, можно выбрать тот или иной сплав, наиболее точно отвечающий условиям эксплуатации изделия.
Что такое литье алюминия под давлением сегодня?
Сегодня литье алюминия под давлением – это полный цикл производства изделия, который может начинаться с разработки чертежа детали и проектирования литейной оснастки (пресс-формы) до получения готовой отливки на выходе.
Суть процесса заключается в заполнении расплавленным алюминием специальной пресс-формы, изготовленной по индивидуальному заказу. Литье алюминия под давлением позволяет недорого получать достаточно сложные изделия благодаря его низкой температуре плавления алюминиевых сплавов и высокой производительности процесса литья. Готовые детали могут весить от нескольких грамм до нескольких килограмм и имеют самые широкие сферы применения.
Для чего в алюминиевом литье используется давление?
Литье алюминия под давлением производится для увеличения скорости и плотности заполнения пресс-формы, а также расширения возможностей по конфигурации деталей. В современном производстве для литья заготовок из алюминия и других цветных металлов применяется давление от 35 до 700 МПа.
Подобным образом сегодня с минимальными затратами возможно отливать детали из алюминия на заказ для автомобильной (тормозные барабаны, детали для карбюраторов, детали для топливной системы, другие детали), медицинской и пищевой промышленности, а также многочисленные детали для производства бытовых приборов, сантехнического и светотехнического оборудования и многого другого.
Среди преимуществ литья алюминия под давлением можно назвать высокую производительность, отличное качество поверхности готовых изделий (5-8 класс), а также высокую точность готовой детали (3-7 класс), не требующей трудоемкой механической обработки.
Литейное производство алюминия
Алюминий – металл, который больше всего распространен в природе. Литье алюминия необходимо для разных областей промышленности. Металл легок, мягок, устойчив к коррозии, поэтому литье алюминия в литейной промышленности пользуется большим спросом.
Для создания отливок из алюминиевых сплавов применяют известные технологии: литье в песчаные, гипсовые, оболочковые, металлические формы, литье в кокиль и по выплавляемым моделям.
Алюминиевое литье решает главную задачу литейного производства – получение качественных отливок путем создания более тонких стенок деталей и сведения к минимуму припусков на механическую обработку.
Литье алюминия в песчано-глинистые формы регламентируется ГОСТами литейной промышлености. Температура литья – 600-800 ºС, силовое воздействие сплава на форму минимально.
Литье в гипсовые формы нужно там, где необходимо изготовить сложные детали высокой точности. Получаемые отливки соответствуют пятому-шестому классу точности. Формы из гипса прочнее, чем из песка, процесс литья в них происходит при более высоких температурах.
Литейные цеха для литья алюминия
На производстве работают цеха различного направления:
- Цех алюминиевого литья в землю. Такой вид литья применяется для изготовления отливок крупного размера и весом до 500 кг.
- Цех алюминиевого и цинкового литья под давлением. Здесь изготовляются сложные детали высокой точности, которые характеризуются однородной внутренней структурой без образования воздушных раковин. Основные заказчики таких моделей – автомобильные заводы, сферы ЖКХ, военно-промышленные комплексы.
- Цех литья их алюминия в кокиль. Литье используется для изготовления отливок весом до 12 кг. Используемый сплав – алюминий, широко применяемый в бытовой и промышленной сфере.
- Цех чугунного, стального и алюминиевого литья по выплавляемым моделям. Максимальный вес изготавливаемых отливок до 2 кг. Детали, выполненные таким путем, применяются в машиностроительной, нефтеперерабатывающей и военной промышленности.
Литейные цеха для литья алюминия поделены на участки, которые также играют важную роль в процессе изготовления деталей.
- 1.Участок зачистки и термообработки. Здесь происходит механическая обработка отливок с помощью автоматического оборудования, станков для зачистки и пресса.
- 2.Инструментальный участок. Объект предназначен для ремонта и усовершенствования литейных форм на токарных фрезерных и расточных станках.
- 3.Участок для ремонта. Слесаря обнаруживают дефекты и неисправности деталей, занимаются ремонтов оборудования со всех цехов.
Литейщик, выполняемый литье алюминия, актуальная вакансия в промышленной сфере. Главная задача хорошего литейщика – знать и уметь применить такую технологию литья, чтобы максимально быстро получить точную отливку высокого качества. Одним из таких направлений является литье алюминия по газифицированным моделям.
Можно видеть, «пощупать» отливку в модели, замерять стенки, невозможно смещение стержней и форм при сборке ввиду их отсутствия. Модели окрашиваются краской с огнеупорными частицами, которая быстро сохнет, посыпают в контейнере песком и заливают металлическим сплавом. Для отсутствия дыма во время процесса применяют насосы для отсасывания газов.
Часто литейщики алюминиевого литья боятся применять новые технологии, пользуются только заученными стереотипами.
Литейный цеха алюминиевого литья поделен на основные участки моделирования, формовки, плавления и обработки. Технология отличается низкими затратами на материал. Особая экономичность проявляется при литье отливок из износостойкой стали, так как снижены растраты на их механическую обработку. Отсутствую геометрические и фигурные ограничения в процессе изготовления.
Производство алюминия
«В природе ничто не возникает мгновенно и ничто не появляется в свете в совершенно готовом виде».
Александр Герцен
русский публицист, писатель
Производство металла делится на три основных этапа: добыча бокситов – алюминийсодержащей руды, их переработка в глинозем – оксид алюминия, и, наконец, получение чистого металла с использованием процесса электролиза – распада оксида алюминия на составные части под воздействием электрического тока. Из 4-5 тонн бокситов получается 2 тонны глинозема, из которого производят 1 тонну алюминия.
В мире существуют несколько видов алюминиевых руд, но основным сырьем для производства этого металла являются именно бокситы. Это горная порода, состоящая, в основном, из оксида алюминия с примесью других минералов. Боксит считается качественным, если он содержит более 50% оксида алюминия.
Бокситы могут сильно отличаться друг от друга. По структуре они бывают твердые и плотные либо рыхлые и рассыпчатые. По цвету – как правило, кирпично-красные, рыжеватые или коричневые из-за примеси оксида железа. При небольшом содержании железа бокситы имеют белый или серый цвет. Но иногда встречаются руды желтого, темно-зеленого цвета и даже пестрые – с голубыми, красно-фиолетовыми или черными прожилками.
Около 90% мировых запасов бокситов сосредоточено в странах тропического и субтропического поясов – из них 73% приходится на пять стран: Гвинею, Бразилию, Ямайку, Австралию и Индию. В Гвинее бокситов больше всего – 5,3 миллиарда тонн (28,4%), при этом они высокого качества, содержат минимальное количество примесей и залегают практически на поверхности.
Следующим этапом является производственной цепочки является переработка бокситов в глинозем – это оксид алюминия Al2O3, который представляет собой белый рассыпчатый порошок. Основным способом получения глинозема в мире является метод Байера, открытый более ста лет назад, но актуальный до сих пор – около 90% глинозема в мире производятся именно так. Этот способ весьма экономичен, но использовать его можно только при переработке высококачественных бокситов со сравнительно низким содержанием примесей – в первую очередь кремнезема.
Метод Байера основан на следующем: кристаллическая гидроокись алюминия, входящая в состав боксита, хорошо растворяется при высокой температуре в растворе едкого натра (каустической щёлочи, NaOH) высокой концентрации, а при понижении температуры и концентрации раствора вновь кристаллизуется. Посторонние, входящие в состав боксита (так называемый балласт), не переходят при этом в растворимую форму или перекристаллизовываются и выпадают в осадок до того, как производится кристаллизация гидроокиси алюминия. Поэтому после растворения гидроокиси алюминия балласт легко может быть отделен – он называется красный шлам.
Это густая масса красно-бурого цвета, состоящая из соединений кремния, железа, титана и других элементов. Его складируют на тщательно изолированных территориях – шламохранилищах. Их обустраивают таким образом, чтобы содержащиеся в отходах щёлочи не проникали в грунтовые воды. Как только хранилище отрабатывает свой потенциал, территорию можно вернуть в первоначальный вид, покрыв её песком, золой или дёрном и посадив определённые виды деревьев и трав. На полное восстановление могут уйти годы, но в итоге местность возвращается в изначальное состояние.
Многие специалисты не считают красный шлам отходом, так как он может служить сырьем для переработки. Например, из него извлекают скандий для дальнейшего производства алюминиево-скандиевых сплавов. Скандий придает таким сплавом особую прочность, сферы использования – автомобиле- и ракетостроение, спортивная экипировка, производство электропроводов.
Также красный шлам может использоваться для производства чугуна, бетона, получения редкоземельных металлов.
У глинозема нет срока годности, но хранить его непросто, так как при малейшей он возможности активно впитывает влагу – поэтому производители предпочитают как можно быстрее отправлять его на алюминиевое производство. Сначала глинозем складывают в штабели весом до 30 тысяч тонн – получается своеобразный слоеный пирог высотой до 10-12 метров. Потом пирог «нарезают» и грузят для отправки в железнодорожные вагоны – в среднем, в один вагон от 60 до 75 тонн (зависит от вида самого вагона).
Существует еще один, гораздо менее распространенный способ получения глинозема – метод спекания. Его суть заключается в получения твердых материалов из порошкообразных при повышенной температуре. Бокситы спекают с содой и известняком – они связывают кремнезем в нерастворимые в воде силикаты, которые легко отделить от глинозема. Этот способ требует больших затрат, чем способ Байера, но в то же время дает возможность перерабатывать бокситы с высоким содержанием вредных примесей кремнезема.
Глинозем выступает непосредственным источником металла в процессе производства алюминия. Но для создания среды, в которой этот процесс будет происходить, необходим еще один компонент – криолит.
Это редкий минерал из группы природных фторидов состава Na3AlF6. Обычно он образует бесцветные, белые или дымчато-серые кристаллические скопления со стеклянным блеском, иногда – почти черные или красновато-коричневые. Криолит хрупкий и легко плавится.
Природных месторождений этого минерала крайне мало, поэтому в промышленности используется искусственный криолит. В современной металлургии его получают взаимодействием плавиковой кислоты с гидроксидом алюминия и содой.
Ток для производства алюминия
Для запуска двигателя автомобильный аккумулятор должен обеспечить электрический ток в 300-350 А в течение 30 секунд. То есть в 1000 раз меньше, чем нужно одному электролизеру для постоянной работы.
В каждой ванне происходит процесс электролиза алюминия. Емкость ванны заполняется расплавленным криолитом, который создает электролитическую (токопроводящую) среду при температуре 950°С. Роль катода выполняет дно ванны, а анода – погружаемые в криолит угольные блоки длиной около 1,5 метров и шириной 0,5 метра, со стороны они выглядят как впечатляющих размеров молот.
Каждые полчаса при помощи автоматической системы подачи глинозема в ванну загружается новая порция сырья. Под воздействием электрического тока связь между алюминием и кислородом разрывается – алюминий осаждается на дне ванны, образуя слой в 10-15 см, а кислород соединяется с углеродом, входящим в состав анодных блоков, и образует углекислый газ.
Примерно раз в 2-4 суток алюминий извлекают из ванны при помощи вакуумных ковшей. В застывшей на поверхности ванны корке электролита пробивают отверстие, в которое опускают трубу. Жидкий алюминий по ней засасывается в ковш, из которого предварительно откачан воздух. В среднем, из одной ванны откачивается около 1 тонны металла, а в один ковш вмещается около 4 тонн расплавленного алюминия. Далее этот ковш отправляется в литейное производство.
При производстве каждой тонны алюминия выделяется 280 000 м 3 газов. Поэтому каждый электролизер независимо от его конструкции оснащен системой газосбора, которая улавливает выделяющиеся при электролизе газы и направляет их в систему газоочистки. Современные «сухие» системы газоочистки для улавливания вредных фтористых соединений используют ни что иное, а глинозем. Поэтому перед тем как использоваться для производства алюминия, глинозем на самом деле сначала участвует в очистке газов, которые образовались в процессе производства металла ранее. Вот такой замкнутый цикл.
Для процесса электролиза алюминия требуется огромное количество электроэнергии, поэтому важно использовать возобновляемые и не загрязняющие окружающую среду источники этой энергии. Чаще всего для этого используются гидроэлектростанции – они обладают достаточной мощностью и не имеют выбросов в атмосферу. Например, в России 95% алюминиевого мощностей обеспечены гидрогенерацией. Однако есть в места в мире, где угольная генерация пока доминирует – в частности, в Китае на нее приходится 93% производства алюминия. В результате для производства 1 тонны алюминия с использованием гидрогенерации в атмосферу выделяется чуть более 4 тонн углекислого газа, а при использовании угольной генерации – в пять раз больше – 21,6 тонны.
Литейное производство алюминия
На заводе «РОСАЛ» используются несколько технологий, которые хорошо зарекомендовали себя в производстве алюминиевых сплавов по всей России. Они позволяют нам получать как единичные отливки, так и наладить серийный выпуск деталей из алюминия под заказ.
Литьё алюминия и алюминиевых сплавов в кокиль
Кокиль представляет собой форму многоразового использования (до 10 000 заливок) и идеально подходит для организации серийного и крупносерийного производства. Основные операции и процессы: очистка кокиля от старой облицовки, прогрев его до 200—300°С, покрытие рабочей полости новым слоем облицовки, установка стержней, закрывание частей кокиля, заливка металла, охлаждение и удаление готовой отливки.
Общие требования к отливкам, получаемых в кокилях, — это обтекаемая конфигурация без острых углов, резких переходов от одной поверхности к другой, без высоких ребер и выступов, глубоких отверстий и карманов.
- Минимально допустимая толщина стенок алюминиевых отливок – 3 мм;
- Масса производимых алюминиевых отливок – от 20 г до 50 кг;
- Шероховатость поверхности отливок согласно ГОСТ 2789-73 Ra = 4 — 20 мкм;
- Класс точности получаемых алюминиевых отливок по ГОСТ Р 53464-2009 : 6-10.
Литье алюминия и сплавов алюминия под давлением
Литье под давлением позволяет получать тонкостенные отливки различной формы и конфигурации с качественным рельефом поверхности практически не требующим механической обработки. Высокая скорость теплоотдачи от отливки к пресс-форме обусловливает необходимость быстрого заполнения (менее 0,1 с.) последней. Такое заполнение обеспечивают специальные литейные машины А711А08, которыми оснащено производство «РОСАЛ». В данных машинах залитый в камеру прессования расплав алюминия под большим давлением (30…100 мн.) и с высокой скоростью (до 100 м/с.) запрессовывается в пресс-форму. Высокие скорости впускного потока способствуют качественному оформлению рельефа отливки.
- Минимальная допустимая толщина стенок алюминиевых отливок – 0,8-1,2 мм;
- Масса производимых алюминиевых отливок – от 5 г до 12 кг;
- Шероховатость поверхности отливок согласно ГОСТ 2789-73 Ra = 3,2-10 мкм;
- Класс точности получаемых алюминиевых отливок по ГОСТ Р 53464-2009 : 3-8.
На нашем производстве мы используем различные сплавы алюминия, каждый из которых обладает своими особенными характеристиками и требует соблюдения определённых правил литья. Сплавы на основе алюминия представляют собой сложные системы из двух и более металлов. В алюминиевых сплавах может присутствовать кремний, медь, магний, цинк. Ниже указаны примеры сплавов алюминия, которые могут использоваться для производства разных деталей:
Сплав – система алюминий-магний: АМг6л, АМг7 (АЛ29);
Сплав – система алюминий-кремний-магний: АК7, АК12, АК7ч (АЛ9), АК8л, АК9ч;
Сплав – система алюминий-медь-магний: Д16 (дюралюминий);
Сплав – система алюминий-кремний-медь: АК5М, АК6М2;
Сплав – система алюминий-медь: АМ5 (АЛ5);
Возможно изготовление изделий из сплавов алюминия, предложенных заказчиком. Для моделирования литейных процессов используются программы SolidWorks и Pro/ENGINEER. Отливки запускаются в производство только после получения результатов моделирования, подтверждающих, что разработанная литейная технология гарантирует отсутствие каких-либо литейных дефектов.
Для литья применяются алюминиевые сплавы в чушках с гарантированным химическим составом ГОСТ 11069-2001, ГОСТ 1583-93; Во время плавления сплавов алюминия производится очистка специальными флюсами, рафинирование спец присадками, и осуществляется продувка инертным газом. Основные процессы производственного цикла литья автоматизированы, что исключает ошибки ручного производства.