Milling-master.ru

В помощь хозяину
5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Какие литейные сплавы используют для изготовления отливок

Сплавы используемые в литейном производстве

Сплавы ( литейные, деформируемые ) делятся на черные — на основе железа и цветные — на основе других металлов.

Черные сплавы делятся на стали (углерод 2 %). Цветные сплавы различаются по металлу основы: алюминиевые, медные, титановые и др.

Большая часть отливок 75 — 80 % делается из чугунов.

Делятся на белые, серые, высокопрочные и ковкие. Это различие определяется формой существования углерода.

Белые чугуны. Весь углерод находится в химическом соединении Fe3C, которое называется цементит. Поэтому в отличие от других чугунов у белых стальной белый излом. Они очень тверды (HB 5000-6000 Мпа). Отливки белого чугуна изготавливают в песчаных формах, а так же в оболочковых и кокилях. Белый чугун применяют для изготовления отливок работающих безударно, на истирание ( например шары помольных мельниц ). Отливки белого чугуна (БГ) используют для превращения в ковкий чугун (КЧ). Это делается при помощи выдержки при высокой температуре (850-900 0 С) — графитообразующего отжига.

Всерых, ковких и высокопрочных чугунах весь углерод или большая его часть присутствует в виде графита. Эти чугуны различают по форме графита: см рис

Пластинчатая Хлопьевидная Шарообразная

Серый чугун Ковкий чугун Высокопрочный чугун

Серый чугун (СЧ). Маркируются по пределу прочности, Кгс/мм 2 ( Например — СЧ10, СЧ20, СЧ25 и др.). Преобладающее число отливок из СЧ изготавливают в песчаных формах. Отливки повышенной точности получают в оболочковых формах, кокилях , в формах по выплавляемым моделям. Отливки типа тел вращения (трубы, гильзы, втулки и др.) получают центробежным литьем. Из отливок СЧ изготавливают широкий сортамент деталей, работающих безударно: станины, крышки и др.

Ковкий чугун(КЧ). Маркируют КЧ 37-12,где 37 — это предел прочности в Кгс/мм 2 , а 12 — это относительное удлинение в %. При отжиге в отливках БЧ

Fe3C 3Fe + Графит хлопьевидный

Пластинчатость увеличивается с 0,5-0,8% до 2-12% (10-12% относительного удлинения типичный уровень для сталей).

КЧ обычно используют для небольших деталей (до 100 Кг), в том числе работающих при динамических нагрузках (Ступицы колес, детали шасси и др.).

Высокопрочные чугуны (ВЧ). Маркируют ВЧ 38-17, где 38 — предел прочности, а 17 -относительное удлинение (например ВЧ 120-4, ВЧ 100-5 и др.).

ВЧ получают, вводя перед разливкой в перегретый обычный чугун никель-магниевые сплавы ( Ni — для снижения пироэффекта , Mg — для получения MgO -зародыша сферического графита ). Отливки ВЧ изготавливают обычно в песчаных формах, в оболочковых, в кокилях и центробежным способом. ВЧ применяют для изготовления крупных деталей ( от нескольких килограмм до десятка тонн). Например, прокатные валки, коленчатые валы и др. Детали могут работать при значительных статических и динамических нагрузках..

Расплавы чугунов получают в вагранках или индукционных печах. В них расплавляют чушки литейного чугуна ( повышенный до 3% кремний) поставляемые из доменных цехов металлургических заводов.

Изготовление стальных отливок

Литейные стали маркируются так же , как и деформируемые, но добавляется буква Л : 15Л, 20Л,…,60Л, 30ХГСЛ, 12К18Н10ТЛ и др.

От деформируемых они отличаются менее жесткими требованиями по вредным примесям (S и P).Отличаются так же содержанием других элементов. Литейные свойства сталей ниже, чем чугунов, поэтому изготавливать стальные отливки сложнее и дороже на 10% в сравнении с серым чугуном. Плавят стали в индукционных и дуговых печах. Отливки получают в основном в песчаных и оболочковых формах, литьем по выплавляемым моделям, центробежным литьем и облицовочных кокилях. Масса отливок от нескольких грамм до нескольких десятков тонн . Применяют стальное литье в различных отраслях машиностроения.

Отливки из алюминиевых сплавов

Литейные сплавы алюминия маркируют Ал1, …,Ал15 и др. Цифры — порядковый номер сплава.. Плавят алюминиевые сплавы в печах сопротивления, в индукционных печах. Хорошими литейными свойствами обладают силумины Ал2, Ал4, Ал9. Это сплавы с 13% содержанием кремния. Большинство остальных сплавов имеют низкие литейные свойства. Отливки из алюминиевых сплавов изготовляют преимущественно литьем в кокиль, под давлением, в песчаные формы. Их используют в авиационной и ракетной технике, автомобильной и других отраслях машиностроения.

Маркировка — Мл1…Мл19. Имеют низкие литейные свойства. Плавят в печах сопротивления, индукционных печах. При плавке и разливке необходимы специальные меры защиты от окисления (флюсы, защитная среда, струю прикрывают порошком серы — SO2 ). Отливки о основном изготовляют в песчаных формах, в кокилях и под давлением. Изготавливают легкие, слабонагруженные детали.

Изготовление отливок из медных сплавов

Сплавы делятся на бронзы и латуни. Бронзы — легированы различными элементами, в латунях л.э. — цинк.

Бронзы маркируют БрО5Ц5С5(Sn5%,Zn5%,Pb5%), БрА9Ж3 (Al9%,Fe3%).

Деформируемые бронзы маркируются несколько иначе БрОЦС — 5-5-5.

Латунилитейные маркируют ЛЦ40МЦ3А (Zn40%,Mn3%,Al

1%), ЛЦ23А6Ж3МЦ2 (Zn23%, Al 6%, Fe3%, Mn2%).

Хорошие литейные свойства у оловяннистых бронз. У остальных бронз и латуней удовлетворительные литейные свойства. Плавят медные сплавы в индукционных канальных низкочастотных печах на воздухе, в защитных газах или в вакууме. Основная часть отливок отливается в песчаные (10%) и оболочковые формы. Остальные — в кокиль, под давлением.

Не нашли, что искали? Воспользуйтесь поиском:

Литейные сплавы

Для производства отливок используются сплавы черных металлов: серые,

высокопрочные, ковкие и другие виды чугунов;

углеродистые и легированные стали; сплавы цветных металлов;

медные (бронзы и латуни), цинковые, алюминиевые и магниевые

сплавы; сплавы тугоплавких металлов: титановые, молибденовые, вольфрамовые и др.

Литейные сплавы должны обладать высокими литейными свойствами (высокой жидкотекучестью, малыми усадкой и склонностью к образованию трещин и др.); требуемыми физическими и эксплуатационными свойствами. Выбор сплава для тех или иных литых деталей сложной задачей, поскольку все требования в реальном учесть не представляется возможным.

Изготовление отливок специальными способами литья. Быстрыми темпами развиваются специальные способы литья: в оболочковые формы, по выплавляемым моделям, кокильное, под давлением, центробежное и другие, позволяющие получать отливки повышенной точности, с малой шероховатостью поверхности, минимальными припусками на механическую обработку, а иногда полностью исключающие ее, обеспечивают высокую производительность труда и т. д.

Литье в оболочковые формы.

Оболочковые формы (разъемные, тонкостенные), изготовляют следующим образом: металлическую модельную плиту, нагретую до температуры 200—250 °С, закрепляют на опрокидывающем бункере с формовочной смесью и поворачивают его на 180° .Формовочная смесь, состоящая из мелкозернистого кварцевого песка (93—96 %) и термореактивной смолы ПК-104 (4—7 %), насыпается на модельную плиту и выдерживается 10—30 с. От теплоты модельной плиты термореактивная смола в пограничном слое переходит в жидкое состояние, склеивает песчинки с образованием песчано-смоляной оболочки толщиной 5—20 мм в зависимости от времени выдержки. Бункер возвращается в исходное положение, излишки формовочной смеси ссыпаются на дно бункера, а модельная плита с полутвердой оболочкой снимается с бункера и

нагревается в печи при температуре 300—350 °С в течение 1—1,5 мин, при этом термореактивная смола переходит в твердое необратимое состояние. Твердая оболочка снимается с модели специальными толкателями.

Аналогично изготовляют и вторую полуформу. Готовые оболочковые полуформы склеивают быстротвердеющим клеем на специальных прессах, предварительно установив в них литейные стержни, или скрепляют скобами. Кроме оболочковых форм этим способом изготовляют оболочковые стержни, используя нагреваемые стержневые ящики. Оболочковые формы и стержни изготовляют на одно- и многопозиционных автоматических машинах и автоматических линиях.

Заливка форм производится в вертикальном или горизонтальном положении.

При заливке в вертикальном положении литейные формы помещают в опоки-контейнеры и засыпают кварцевым песком или металлической дробью для предохранения от преждевременного разрушения оболочки при заливке расплава.

Литье в оболочковые формы обеспечивает высокую геометрическую точность отливок, так как формовочная смесь, обладая высокой подвижностью, дает возможность получать четкий отпечаток модели.

Литье по выплавляемым моделям.

Этим способом отливки получают путем заливки расплавленного металла в формы, изготовленные по выплавляемым моделям многократным погружением в керамическую суспензию с последующими обсыпкой и отверждением.

Читать еще:  Основные сведения о литейном оборудовании

Модельный состав в пастообразном состоянии запрессовывают в пресс-формы. После затвердевания модельного состава пресс-форма раскрывается и модель выталкивается в ванну с холодной водой. Затем модели собирают в модельные блоки с общей литниковой системой. В один блок объединяют 2—100 моделей.

Керамическую суспензию приготовляют тщательным перемешиванием огнеупорных материалов (пылевидного кварца, электрокорунда и др.) со связующим — гидролизованным раствором этил-силиката.

Формы по выплавляемым моделям изготовляют погружением модельного блока в керамическую суспензию , налитую в емкость с последующей обсыпкой кварцевым песком в специальной установке. Затем модельные блоки сушат 2—2,5 ч на воздухе или 20—40 мин в среде аммиака. На модельный блок наносят четыре—шесть слоев огнеупорного покрытия с последующей сушкой каждого слоя.

Модели из форм удаляют выплавлением в горячей воде. Для этого их

погружают на несколько минут в бак , наполненный водой , которая

устройством нагревается до температуры 80—90 °С .

После охлаждения отливки форма разрушается. Отливки на обрезных прессах или другими способами отделяются от литников и для окончательной очистки направляются на химическую очистку в 45 %-ном водном растворе едкого натра, нагретом до температуры 150 °С. После травления отливки промывают проточной водой, сушат, подвергают термической обработке и контролю.

При литье в кокиль отливки получают путем заливки расплавленного металла в металлические формы — кокили. По конструкции различают кокили: вытряхные; с вертикальным разъемом; с горизонтальным разъемом и др.

Полости в отливках оформляют песчаными, оболочковыми или металлическими стержнями. Кокили с песчаными или оболочковыми стержнями используют для получения отливок сложной конфигурации из чугуна, стали и цветных сплавов, а с металлическими стержнями — для отливок из алюминиевых и магниевых сплавов.

Рабочую поверхность кокиля и металлических стержней очищают от ржавчины и загрязнений. Затем на рабочую поверхность кокиля наносят теплозащитные покрытия для предохранения его стенок от воздействия высоких температур заливаемого металла, для регулирования скорости охлаждения отливки, улучшения заполняемости кокиля, облегчения извлечения отливки и т. д.

При сборке кокилей в определенной последовательности устанавливают

металлические или песчаные стержни, проверяют точность их установки и

закрепления, соединяют половины кокиля и скрепляют их.

Заливку металла осуществляют разливочными ковшами или автоматическими заливочными устройствами. Затем отливки охлаждают до температуры выбивки, составляющей 0,6—0,8 температуры солидуса сплава, и выталкивают из кокиля. Этот способ литья высокопроизводителен. Недостатки кокильного литья: высокая трудоемкость изготовления кокилей, их ограниченная стойкость, трудность изготовления сложных по конфигурации отливок.

Литье под давлением.

Литьем под давлением получают отливки в металлических формах (пресс- формах), при этом заливку металла в форму и формирование отливки

осуществляют под давлением. Изготовляют отливки на машинах литья под

давлением с холодной или горячей камерой прессования. В машинах с холодной камерой прессования камеры прессования располагаются либо горизонтально, либо вертикально.

На машинах с горизонтальной камерой прессования порцию расплавленного металла заливают в камеру прессования который плунжером под давлением 40—100 МПа подается в полость пресс-формы, состоящей из неподвижной и подвижной полуформ. Такие машины применяют для изготовления отливок из медных, алюминиевых, магниевых и цинковых сплавов массой до 45кг.

Центробежное литье. При центробежном литье сплав заливают во вращающиеся формы; формирование отливки осуществляется в период действие центробежных сил, что обеспечивает высокую плотность и механические свойства отливок.

Центробежным литьем отливки изготовляют в металлических, песчаных,

оболочковых формах и в формах для литья по выплавляемы моделям на

центробежных машинах с горизонтальной или вертикальной осью вращения.

Преимущества центробежного литья — получение внутренних полостей трубных заготовок без применения стержней; большая экономия сплава за счет отсутствия литниковой системы; возможность получения двухслойных заготовок, что достигается поочередной заливкой в форму различных сплавов (сталь и чугун, чугун и бронза и т. д.).

3. Методика назначения режимов при точении

Элементы режима точения выбирают в следующей последовательности.
Вначале задаются значением глубины резания. При этом стремятся снять за один проход весь припуск. Если, исходя из технологических требований, необходима последующая чистовая обработка, то за первый черновой проход снимается 80% припуска, а за второй-остальные 20%. Затем выбирается величина подачи. При этом необходимо назначать наибольшую допустимую подачу, исходя из требований точности и шероховатости обработанной поверхности. На практике для выбора величины подачи (S, мм/об) и глубины резания (t, мм) существуют соответствующие таблицы. В зависимости от выбранных глубины резания и подачи определяется оптимальная скорость резания v = CV КV /T *mS*xv t*yv, где CV – коэф, учитывающий физико-механические свойства обрабатываемого материала, материала режущей части инструмента и т.д., Т- период стойкости инструмента. Выбирается в зависимости от технологической схемы обработки. Для наружного точения Т= 60-90 мин, t – глубина резания, мм, S – подача в мм/об, Кv – поправочный коэф, учитывающий особенности геометрии заточки инструмента, применение смазочно-охлаждающих средств и т.п., m, xv, yv – показатели степеней, величины которых определяются свойствами обрабатываемого и инструментального материалов и условиями обработки. По оптимальной скорости резания находят частоту вращения шпинделя станка: n= 1000v / пи * D

4. Организация проведения обязательной и добровольной сертификации

Сертификация – это действие, проводимое независимо от участвующих сторон, лиц или органов и доказывающее, что идентифицированная продукция, процесс и услуги соответствуют конкретному стандарту или другому нормативному документу.
Сертификация продукции включает в себя комплекс проверок, цель которых – выявление соответствия товара требованиям качества и безопасности. Данная проверка проводится независимо от изготовителя и потребителя данной продукции, сертификацией занимается уполномоченная организация (орган по сертификации). По результатам проверку производитель получает документ, который и подтверждает полное соответствие товара всем вышеперечисленным требованиям. Этот документ называется Сертификатом соответствия или Сертификатом качества. Сертификацию принято подразделять на обязательную, проводимую уполномоченными на то органами, подтверждающим соответствие качества оказываемых услуг требованиям стандарта, и добровольную, проводимую по инициативе изготовителя или потребителя продукции. Проведение сертификации обуславливается необходимостью поддержания качества технического сервиса. Основные этапы сертификации: 1. Оценка деятельности предприятия 2. Оценка технологических процессов 3. Оценка качества услуг по ТО и ремонту 4. сопоставление оценочных показателей с нормативными 5. Выдача заключения комиссией по сертификации 6. принятие решения по выдаче сертификата.

Литейные сплавы

3.1. Литейные свойства сплавов

Простота изготовления фасонной отливки зависит от литейных свойств сплавов. Например, получить отливку сложной конфигурации и заданных свойств из серого чугуна значительно проще, чем из легированной стали и из некоторых сплавов цветных металлов.

Литейные свойства сплавов — это такие технологические свойства, которые непосредственно влияют наоплучение качественных отливок с хорошими эксплуатационными показателями. Основными литейными свойствами, которые влияют на выбор сплава в качестве литейного материала, являются: жидкотекучесть, усадка, ликвация, склонность к газопоглощению и трещинообразованию.

Жидкотекучесть — способность расплава свободно течь в литейной форме, заполняя и точно воспроизводя все ее контуры.

Жидкотекучесть сплавов зависит от следующих параметров:

1. Температурного интервала кристаллизации

где Тл и Тс — температуры ликвидуса и солидуса соответственно.

Чем меньше ΔТ, тем больше жидкотекучесть. Лучшей жидкотекучестью обладают чистые металлы и эвтектические сплавы, у которых ΔТ = 0. Худшая жидкотекучесть у сплавов, образующих твердые растворы, поскольку в процессе их заливки и охлаждения в литейной форме возникает дополнительное трение образующихся твердых кристаллов о ее стенки.

2. Вязкости и поверхностного натяжения расплава (чем они меньше, тем больше жидкотекучесть).

3. Температуры заливаемого металла и температуры формы

(чем они выше, тем выше жидкотекучесть).

4. Свойств литейной формы (чем больше ее теплопроводность, теплоемкость и влажность, тем меньше жидкотекучесть).

Жидкотекучесть литейных сплавов определяют с помощью различных методов и технологических проб. Технологические пробы на жидкотекучесть поводят в специальных литейных формах с полостью в виде каналов, характер заполнения которых жидким металлом определяет его жидкотекучесть. Из разнообразных конструкций технологических проб наибольшее распространение получила спираль Керри — проба спиральной формы (рис. 1.24).

Читать еще:  Технологический процесс литья в песчано глинистые формы

Жидкотекучесть определяют по длине пути, пройденному жидким металлом до его затвердевания, т. е. по длине прутка. Небольшие выступы, нанесенные через 50 мм, облегчают измерение длины спирали (прутка). Спиральный канал позволяет получить длинные прутки в сравнительно небольших формах.

Рис. 1.24. Технологическая спиральная проба (спираль Керри): 1 — чаша; 2 — стояк;

3 — металлоприемник; 4 — спиральный канал; 5 — выступы

Усадка свойство металлов и сплавов уменьшать свой объем при затвердевании и охлаждении. Она приводит к уменьшению размеров отливки. Различают объемную и линейную усадки.

На усадку влияют следующие факторы:

1. Химический состав сплава (усадка серого чугуна уменьшается с увеличением содержания углерода С и кремния Si и увеличивается с повышением содержания фосфора Р и серы S; усадка алюминиевых сплавов уменьшается с повышением содержания кремния Si).

2. Температура заливаемого металла Тмет (чем меньше Тмет, тем меньше усадка).

3. Скорость охлаждения металла в форме или теплопроводность формы (чем больше скорость охлаждения, тем больше усадка).

4. Конструкция отливки и литейной формы (с увеличением толщины стенок чугунной отливки усадка уменьшается).

Линейная усадка для различных сплавов составляет: для серого чугуна — 0,9. 1,5 %; для углеродистых сталей — 2. 2,4 %; для алюминиевых сплавов — 0,9. 1,5 %; для медных сплавов — 1,4. 2,3 %.

Усадка в отливках проявляется в виде усадочных раковин и усадочной пористости.

Усадочные раковины — сравнительно крупные полости, расположенные в частях отливки, затвердевающих в последнюю очередь. Усадочные раковины образуются при изготовлении отливок из чистых металлов, сплавов эвтектического состава и сплавов с узким интервалом кристаллизации (низкоуглеродистые стали, безоловянистые бронзы и др.). Как правило, усадочные раковины из отливок стремятся сместить в литниковую систему (выпор или прибыль), где металл затвердевает в последнюю очередь.

Усадочная пористость — скопление мелких пустот, образовавшихся в обширной зоне отливки в результате усадки в тех местах, которые затвердевали последними без доступа к ним расплавленного металла. Усадочная пористость располагается по границам зерен металла.

Для получения отливок без усадочных раковин и пористости необходимо обеспечить, во-первых, непрерывный подвод расплавленного металла в форму в процессе его кристаллизации и, вовторых, движение фронта кристаллизации таким образом, чтобы последними кристаллизовались части отливки, граничащие с поверхностью формы или расположенные в литниковой системе. Первое достигается размещением в литейной форме прибылей, второе — наружных и внутренних холодильников.

Ликвация — неоднородность химического состава отливки в различных ее точках, возникающая при кристаллизации. На процесс развития ликвации (кроме химического состава сплава) влияют технологические факторы (конфигурация отливки, скорость охлаждения и др.). Различают три вида ликвации: зональную, дендритную и ликвацию по плотности.

Зональная ликвация наблюдается во всем объеме отливки из-за различия температур кристаллизации отдельных компонентов сплава. По мере кристаллизации металл слитка будет все более обогащаться легкоплавкими примесями, поэтому его химический состав по объему будет различным. Так, наружные участки и тонкие стенки стальных отливок, кристаллизующиеся в первую очередь, содержат ликвирующих более легкоплавких примесей (S, P) меньше, чем более массивные части, которые кристаллизуются позже.

Дендритная (внутрикристаллическая) ликвация наблюдается в объеме одного зерна. Чем больше температурный интервал между началом и концом кристаллизации, тем больше будут отличаться по составу отдельные участки внутри зерен. В дендритах оси первого порядка обогащены более тугоплавким компонентом и в них содержание примесей бывает минимальным. Кристаллизующиеся в последнюю очередь междендритные пространства содержат наибольшее количество более легкоплавких компонентов и примесей.

Ликвация по плотности наблюдается при сплавлении металлов значительно различающихся по плотности. Так, в сплавах системы

«свинец–сурьма» верхняя часть слитка будет обогащена сурьмой, а нижняя — более тяжелым свинцом, т. е. отличаться от среднего состава сплава.

Обычно ликвация является нежелательным явлением, поскольку в результате неоднородности химического состава свойства металла на различных участках отливкитбуду отличаться друг от друга.

Склонность к газопоглощению. В расплавленном состоянии металлы и сплавы способны активно поглощать водород, кислород, азот и другие газы из оксидов и влаги шихтовых материалов при их плавке, а также сгорании топлива, из окружающей среды при заливке металла в форму и т. д. Как правило, растворимость в металлах газов с понижением температуры уменьшается, что вызывает их выделение в процессе кристаллизации. В результате этого в отливке могут образовываться газовые раковины и газовая пористость, которые ухудшают механические свойства и герметичность отливок. Для уменьшения газовых раковин и пористости плавку сплава проводят под слоем флюса, в среде защитных газов, с использованием просушенных шихтовых материалов. При этом перед заливкой расплавленный металл подвергают дегазации вакуумированием или продувкой инертными газами.

Для устранения газонасыщенности отливок следует увеличивать газопроницаемость литейных форм и стержней, снижать влажность формовочных смесей, подсушивать формы и т. д. (например, выплавка стали в вакуумных печах устраняет газонасыщенность).

Склонность к образованию трещин и короблению. В результате неравномерного затвердевания металла в тонких и толстых частях отливки, а также из-за торможения усадки формой при ее охлаждении возникают внутренние напряжения. Эти напряжения тем выше, чем меньше податливость формы и стержней. Если величина внутренних напряжений превысит предел прочности сплава в данном месте, то в нем образуются горячие или холодные трещины.

Горячие трещины — как правило, хорошо видимые разрывы поверхности отливки, распространяющиеся по границам зерен и имеющие неровную окисленную поверхность, на которой при увеличении видно дендритное строение сплава. Эти трещины образуются при застывании расплава в форме. Характерными признаками горячих трещин являются их неровные (рваные) края и значительная ширина.

Холодные трещины — очень тонкие разрывы поверхности отливки, имеющие обычно чистую, светлую (с цветами побежалости) зернистую поверхность. Они образуются из-за внутренних напряжений или механического воздействия при температуре ниже температуры свечения отливки. В отличие от горячих трещин холодные распространяются непосредственно по зернам, а не по их границам, и располагаются преимущественно в острых углах и других местах с высокой концентрацией напряжений.

Холодные трещины, чаще всего, образуются в тонкостенных отливках сложной конфигурации. Вероятность их образования тем выше, чем больше упругие свойства сплава, чем значительнее его усадка (особенно при пониженных температурах) и чем ниже теплопроводность сплава. Вероятность образования холодных трещин в отливках также возрастает при наличии в сплаве вредных примесей (например, фосфора в сталях).

Для предупреждения образования трещин необходимо осуществлять равномерное охлаждение отливок (во всех сечениях), применять сплавы, обладающие повышенной пластичностью, проводить дополнительный отжиг отливок и т. п.

Внутренние напряжения, возникающие при охлаждении отливок, могут привести к их короблению (изменению формы и размеров отливок). Вероятность коробления отливки увеличивается при усложнении ее конфигурации и повышении скорости охлаждения, вызывающие неравномерное охлаждение отдельных частей отливки и, как следствие, различную усадку. Коробление отливки также может быть вызвано сопротивлением формы усадке отдельных частей отливки. Для предупреждения коробления отливки необходимо увеличивать податливость формы, создавать рациональную конструкцию отливки и т. д.

3.2. Производство отливок из чугуна

При выборе материала для литья детали следует учитывать условия, в которых она работает, физико-механические свойства сплава, литейные свойства, условия кристаллизации в форме, а также стоимость сплава.

Если принять среднюю стоимость отливки из серого чугуна за 100 %, то стоимость отливок из других сплавов составит: ковкий ч1у30гу%н ,—сталь — 160 %, цветные сплавы — 300. 600 %.

Литейные чугуны. Чугун является самым распространенным сплавом в литейном производстве. Так, около 80 % общего мирового выпуска отливок приходится на долю чугуна. В связи с улучшением его свойств и появлением высокопрочного чугуна с шаровидным графитом, чугуна с вермикулярным графитом и легированных чугунов специального назначения область применения очудогулнжа ептр расширяться.

Читать еще:  Модельщик выплавляемых моделей в литейный цех

В машиностроении для производства деталей используют следующие чугуны: серые, с вермикулярным графитом, высокопрочные, ковкие и специального назначения, характеризующиеся наличием в их структуре свободного углерода в виде графита. Белые чугуны, в структуре которых углерод находится только в связанном состоянии в виде цементита, в машиностроении применяются редко из-за их высокой твердости, затрудняющей механическую обработку, и хрупкости. Эти чугуны применяются только для ограниченной номенклатуры отливок, подвергающихся в условиях эксплуатации сильному износу от трения при высоких удельных нагрузках (валки прокатных станов, щеки камнедробилок и т. п.).

Широкое применение чугунов обусловлено следующим:

1) высокими литейными свойствами этих сплавов, что позволяет изготавливать из них отливки сложной конфигурации, с тонкими стенками, а также производить механическую обработку этих отливок;

2) большей, чем у стальных деталей, способностью гасить вибрации;

3) меньшим, чем у сталей, влиянием концентраторов напряжений (риски, задиры, переходыогот одн на конструкционную прочность деталей;

сечения к другому)

4) высокими антифрикционными свойствами, обусловленными наличием в структуре чугуна свободного графита, являющегося естественной смазкой;

5) невысокой стоимостью отливок по сравнению со стоимостью отливок из стали и цветных сплавов.

Серый чугун — чугун с пластинчатой формой графитовых включений. Металлической основой серого чугуна является феррит, феррит – перлит или перлит (рис. 1.25). Он является наиболее распространенным литейным сплавом. Отливки из этого чугуна составляют до 80 % от общего объема чугунного литья.

Рис. 1.25. Микроструктура серого чугуна: а — ферритный чугун; б — феррито-перлитный; в — перлитный

Структура металлической основы практически не влияет на низкую пластичность серого чугуна (δ = 0,2. 0,5 %), но оказывает влияние на его прочность и твердость (σв = 100. 450 МПа; НВ = 143. 289). Он обычно содержит 2,9. 3,7 % С, 0,5. 1,1 % Мn, 1,2. 2,6 % Si, до 0,3 % Р, до 0,15 % S.

Маркируется серый чугун буквами СЧ (серый чугун) и двумя цифрами, обозначающими предел прочности при растяжении (кгс/мм 2 ). Согласно ГОСТ 1412-85 имеются следующие марки серого чугуна: СЧ10, СЧ15, СЧ20, СЧ25, СЧ30, СЧ35, СЧ40 и СЧ45.

Кроме того, по требованию потребителя допускаются марки серого чугуна СЧ18, СЧ21 и СЧ24.

Для изготовления малоответственных деталей, испытывающих небольшие нагрузки в работе, используют чугуны марок СЧ10 и СЧ15, а для изготовления более ответственных деталей применяют чугуны остальных марок.

Следует отметить, что чугуны СЧ30, СЧ35, СЧ40 и СЧ45 относятся к группе модифицированных серых чугунов, которые получают добавлением в жидкий чугун перед его разливкой специальных добавок — графитизирующих модификаторов (ферросилиция, силикокальция, графита и др.) в виде кусков размером 1. 5 мм. Это позволяет получать в модифицированных чугунных отливках перлитную основу с вкраплениями небольшого количества изолированных пластинок графита средней величины, что повышает их механические свойства.

Высокие литейные свойства серого чугуна позволяют получать самые разнообразные детали. Области применения серых чугунов представлены в таблице 1.2.

Применение серого чугуна в машиностроении

Классификация литейных сплавов

В зависимости от метода переработки в заготовки металлические сплавы разделяют на литейные (используемые при изготовлении фасонных отливок) и деформируемые, получаемые вначале в виде слитков, а затем перерабатываемые ковкой, прокаткой, волочением, штамповкой. Различия в методах переработки оказывают существенное влияние на требования к свойствам, а следовательно, и на требования к составам литейных и деформируемых сплавов.

Литейные сплавы классифицируются в зависимости от их состава, свойств, назначения. Сплавы на основе железа называют черными. К ним относят все разновидности чугунов и сталей. Остальные литейные сплавы на основе алюминия, магния, цинка, олова, свинца, меди, титана, молибдена, никеля, кобальта, бериллия и других металлов, в том числе и благородных (серебра, золота, платины), называют цветными.

Для обеспечения требуемых эксплуатационных свойств литых деталей, например прочности, твердости, износостойкости, в сплавы в определенном количестве вводят специальные добавки, так называемые легирующие компоненты. По содержанию их сплавы делят на низколегированные (менее 2,5% легирующих компонентов по массе), среднелегированные (от 2,5 до 10%) и высоколегированные (свыше 10%).

Помимо специально вводимых в литейные сплавы компонентов в них обычно присутствуют постоянные примеси, наличие которых связано с особенностями металлургических процессов приготовления сплава и составом исходных металлургических материалов (руд, топлива, флюсов). Часто эти примеси (например, сера и фосфор в сталях) являются вредными и содержание их ограничивают.

Литейные сплавы либо приготовляют из исходных компонентов (шихтовых материалов) непосредственно в литейном цехе, либо сплавы поступают с металлургических комбинатов в готовом виде и их только переплавляют перед заливкой в литейные формы. Как в первом, так и во втором случае отдельные элементы в процессе плавки, входящие в состав литейного сплава, могут окисляться (угарать), улетучиваться при повышенных температурах (возгоняться), вступать в химическое взаимодействие с другими компонентами или с футеровкой печи и переходить в шлак. Для восстановления требуемого состава сплава потери отдельных элементов в нем компенсируют, вводя в расплав специальные добавки (лигатуры, ферросплавы), приготовляемые на металлургических предприятиях. Лигатуры представляют собой вспомогательные сплавы, используемые как для введения в расплав основного литейного сплава легирующих элементов, так и для компенсации их угара.

Лигатуры содержат помимо легирующего элемента также и основной металл сплава, поэтому они легче и полнее усваиваются расплавом, чем чистый легирующий элемент. Применение лигатур становится особенно необходимым, если температуры плавления основного литейного сплава и легирующего элемента имеют значительную разницу. Наиболее широко применяют лигатуры из цветных металлов, например: медь — никель (15— 33% Ni), медь — алюминий (50% Al), медь — олово (50% Sn), алюминий—магний (до 10% Mg). При литье черных сплавов широко используют ферросплавы: ферросилиций (сплав железа с 13% и более кремния), ферромарганец, феррохром, ферровольфрам, ферромолибден и др. для введения легирующих элементов, а также для раскисления расплава. Используют также ферросплавы, состоящие из трех компонентов и более. К ферросплавам условно относят и некоторые сплавы, железо в которых содержится только в виде примеси, например силикоалюминий и силикокальций.

Раскисление, для которого часто используют ферросплавы, представляет собой процесс удаления из сплава кислорода, содержащегося в виде растворенных в металле оксидов (например, закиси железа FeO в стали). В процессе раскисления элементы, содержащиеся в ферросплавах, выполняют роль восстановителей:
они соединяются с кислородом оксида, растворенного в расплаве, восстанавливают металл, а сами, окислившись, переходят в шлак. Так, раскисление стали кремнием, содержащимся в ферросилиции, происходит по реакции 2FeO+Si→2Fe+SiO2.

Очищение (рафинирование) расплава раскислением способствует значительному улучшению качества металла отливки, повышению его прочности и пластичности.

Ряд сплавов, так же как и металлов либо неметаллических материалов (солей и др.), используют в качестве модификаторов, которые при введении в литейный сплав в небольших количествах существенно влияют на его структуру и свойства, например измельчают зерно и способствуют повышению прочности металла. Так, для получения высокопрочного чугуна широко используют модифицирование магнием.

Б настоящее время в СССР около 95% всех производимых отливок (по массе) составляют чугунные и стальные. Следует однако учитывать, что из черных сплавов изготовляют большое количество крупных отливок, масса которых доходит до нескольких десятков и даже сотен тонн, а из сплавов цветных металлов отливают в основном мелкие и средние детали массой от нескольких граммов до нескольких десятков и редко — до нескольких сотен килограммов. Поэтому, несмотря на то что в общем выпуске масса отливок из цветных сплавов составляет около 5%. номенклатура их, так же как и методы литья, весьма разнообразна, а количество значительно.

Ссылка на основную публикацию
Adblock
detector