Milling-master.ru

В помощь хозяину
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Измерительные инструменты в исследовании

XI Международная студенческая научная конференция Студенческий научный форум — 2019

Измерительные инструменты в исследовании

При проведении экономических исследований используются методы и измерительные инструменты. При исследовании экономических явлений и процессов используются качественные и количественные измерения. Как порядковое, так и метрическое шкалирование экономических величин существенно затрудняется многомерностью их характеристик. Измерительными инструменты: стоимостные меры, натуральные показатели, трудовые.

Правильность применения измерительных инструментов позволяют соотносить различные экономические явления, выявлять уровень их влияния друг на друга, внутренние и внешние взаимосвязи между ними.

В то же время необходимо отметить, что при планировании, прогнозировании и проектном управлении возникает также потребность в использовании технических показателей. К которым относятся: технологические, конструктивные и эксплуатационные параметры. Для данных показателей используются измерительные инструменты и инструменты измерения. К первым относятся показатели измерения высоты, длины, квадратуры и т.д. Ко вторым относятся инструменты, которые позволяют производит процедуру измерения: штанги, угломеры, весы и прочие инструменты измерения.

Рассмотрим примеры использования измерительных инструментов при исследовании экономических явлений. Например, при анализе эффективности управления персоналом используется факторный метод. При этом необходимо обеспечить условие сопоставимости ( сопоставления экономических величин, показателей, согласно которому они должны быть предварительно приведены к адекватной форме измерения, к сопоставимому виду). Измерительный инструмент –трудовые и стоимостные показатели. Например, выработка – тыс.рублей на 1 одного работника в год.

Наиболее высокая сложность использования и правильного подбора измерительного инструмента в экономических исследованиях происходит при оценке экономических явлений и процессов, которые не подаются непосредственному измерению (чаще всего при этом используется экспертный метод оценки). Рассмотрим данную проблематику на примере оценке стоимости бренда. Бренд по своей экономической сущности является объектом интеллектуальной собственности. А при проведении оценки данных объектов возникают проблемы количественной их оценки. Относительная стоимость бренда основывается на оценке брендов путем использования таких инструментов оценки как: баллы, индексы, экспертное мнение, сравнение с другими брендами. Методы оценки бренда через относительную стоимость отличаются соответственно применяются различные измерительные инструменты.

Метод «вычисления через мультипликатор М» основывается на использовании формулы расчета:

y = -0,900293* x 1+11,0116* x 2+392764* x 4+16081* x 5, (1)

где х – значение оценки силы нематериального актива/100

Следующий шаг вычисляется чистая прибыль от нематериального актива. Потом рассчитанные показатели умножаются на актив.

Рассмотрим метод «Модель индексов стоимости нематериального актива». Суть данной модели заключается в формуле:

где S – относительная стоимость нематериального актива,

Цо –относительная цена актива,

Урд – рыночная доля актива,

К1— индекс приверженности.

К2— индекс долгосрочности существования нематериального актива на рынке.

Рассмотримметод «Young&Rubicam Brand Asset Valuator и Brand Equity Ten» ДэвидаАакера . Данный метод основывается только на качественной оценке нематериального актива, базирующейся на результатах социологических исследований.

Рассмотримметод « Interbrand/ Financial World». Суть данного метода заключается в использовании такого инструмента оценки, как «нематериальный актив — мультипликатор». Он основывается на использовании семи показателей (каждому из которых определяется вес важности). Оценка важности производится каждой компанией самостоятельно (критерии оценки остаются коммерческой тайной).

Как видно из сравнения данных трех методов в каждом из них применяются различные измерительные инструменты.

1. Оркина Е.А. Оценка стоимости интеллектуальной собственности. М.: Феникс,2015

ИЗМЕРИТЕЛЬНЫЕ ИНСТРУМЕНТЫ

ИЗМЕРИТЕЛЬНЫЕ ИНСТРУМЕНТЫ, специальные устройства, применяемые для точного определения размеров и других геометрических характеристик предметов. К таким устройствам относятся кронциркули, нутромеры и глубиномеры (в том числе соответствующие микрометрические приборы и штангенприборы), щупы, индикаторные приборы, уровни и отвесы, линейки и угольники.

Микрометры, нутромеры и глубиномеры.

Некоторые часто встречающиеся размеры, например диаметр цилиндра, диаметр и глубину отверстия, невозможно точно измерить, прикладывая к детали обычную измерительную линейку. Но можно «взять» диаметр или глубину отверстия при помощи кронциркуля-нутромера или глубиномера, а затем измерить взятое расстояние по линейке или штриховой мере. Для повышения точности таких измерений применяются кронциркули прямого отсчета, снабженные шкалой, а также микрометры и штангенприборы того же назначения. В микрометрических приборах используется высокоточная винтовая резьба очень малого шага. Отсчет по микрометру сводится к определению числа полных оборотов и долей оборота барабана относительно его нулевого положения. Полные обороты отмечаются штрихами линейной шкалы на неподвижном стебле, а дробные доли оборота – штрихами круговой шкалы на торцевой кромке вращающегося барабана. В большинстве микрометров англоязычных стран используется резьба, имеющая 40 ниток на дюйм, и предусматривается 25 делений на барабане, так что каждому делению барабана соответствует перемещение измерительного стержня на одну тысячную дюйма. Аналогичные характеристики имеют метрические микрометры.

Штангенциркуль позволяет отсчитывать диаметр непосредственно и с высокой точностью. Неподвижная основная шкала британского штангенциркуля имеет 50 делений на дюйм, а подвижная шкала нониуса – всего 20 делений. Сумма этих 20 делений равна сумме 19 делений основной шкалы. Поэтому, когда нулевой штрих шкалы нониуса останавливается между двумя штрихами основной шкалы, только один штрих шкалы нониуса может лежать точно напротив какого-либо штриха основной шкалы. Число соответствующих ему делений шкалы нониуса равно числу двадцатых долей деления, на которое нулевой штрих шкалы нониуса смещен относительно одного штриха основной шкалы в сторону следующего штриха. Это и дает возможность отсчитывать измеряемый диаметр с точностью до тысячных долей (дюйма, сантиметра).

В тех случаях, когда требуется измерять очень малые расстояния, например, лишь в несколько раз превышающие толщину бумаги, применяются наборы пластинок-щупов – плоских и клиновых. Измерения проводятся по принципу «проходит – не проходит». В измеряемый зазор вводят одну за другой пластинки набора, пока не дойдут до такой ситуации, когда одна из пластинок едва входит в зазор, а следующая уже не входит. Клиновый щуп осторожно вдвигают в зазор до тех пор, пока он не остановится, после чего считывают указанную на лицевой поверхности щупа его толщину.

Читать еще:  Инструмент применяемый для разметки изделий

Индикаторные приборы.

Часто важное значение имеет степень эксцентричности вала, который в идеале должен вращаться вокруг своей геометрической осевой линии. Для такого контроля пользуются индикаторными приборами. Индикаторный прибор закрепляют рядом с валом так, чтобы его подвижный измерительный стержень касался поверхности проверяемого вала. При вращении вала этот стержень, прижимаемый к поверхности вала пружиной, поднимается и опускается в соответствии с биениями вала. Перемещение стержня увеличивается рычажным механизмом прибора и преобразуется в поворот стрелки по круговой шкале индикатора. Индикаторные приборы показывают биения, измеряемые тысячными и десятитысячными долями (дюйма, сантиметра).

Уровни и отвесы.

В строительном деле, а также при монтаже и наладке механического оборудования принято выверять основные оси и плоскости на параллельность или перпендикулярность направлению действия силы тяжести. Для этого пользуются такими устройствами, как уровни и отвесы. Отвес представляет собой груз, подвешенный на нити. Опустив отвес возле какого-либо элемента конструкции, который должен быть вертикальным, можно невооруженным глазом проверить, действительно ли контролируемый край этого элемента параллелен нити отвеса. Точность при таком методе зависит от того, насколько симметричен груз относительно точки закрепления нити.

Уровень – это линейка с закрепленной на ней слегка искривленной герметичной стеклянной ампулой. Ампула длиной несколько сантиметров наполнена спиртом так, что в ней остается пузырек (воздуха или другого газа). Когда ампула строго горизонтальна, пузырек занимает среднее положение, отмеченное на ее стенке. Линейку кладут на контролируемую деталь (например, фундаментную плиту) и регулируют ее наклон, добиваясь, чтобы пузырек занял среднее положение. Закрепив ампулу на линейке так, чтобы ее осевая линия была перпендикулярна линейке, можно проверять вертикальные детали.

Линейки и угольники.

При разметке обрабатываемой детали обычно пользуются измерительными и поверочными линейками и угольниками. Угол между аншлагом и линейкой угольника чаще всего равен 90°, но бывают и угольники с углом 45°. В тех случаях, когда требуются другие углы, применяются угломеры с транспортирами, в которых угол установки угольника плавно регулируется.

Измерительные инструменты: виды, применение, техника измерения

Штангенциркуль

Штангенинструмент- общее название средств измерения, имеющих в своей конструкции мерную штангу. Stange — стержень, прут (нем).

Нониусный штангенциркуль, очень популярный измерительный инструмент в машиностроении и домашнем инструментарии.

Основным элементом штангенинструмента является штанга, на которую нанесена главная шкала, с шагом 1 миллиметр и скользящий по ней ползун, с расположенным на нем нониусом (еще одна шкала).

Нониусный штангенциркуль довольно универсальный инструмент, но его разновидности могут отличаться узкой специализацией:

  • штангенрейсмас- измерительный инструмент, имеющий основание, которое и является началом шкалы. Измерения штангенрейсмасом производятся на мерном столе, к которому предъявляются технические требования.
  • штангенглубиномер- измерительный инструмент, применяющийся для определения геометрических параметров отверстий, пазов, уступов и т.д.
  • штангензубомер- измерительный инструмент применяющийся для определения толщины зубьев.

Конструкции нониусных штангенциркулей отличаются типоразмерами и характеристиками, формой подвижной рамки (ползуна), пределами измерения.

По исполнению, нониусные штангенциркули подразделяются на односторонние и двусторонние, с наличием глубиномера или без него.

Нониусные штангенциркули имеют предел измерения равный 0,1 миллиметра или 0,05 миллиметров. Предел измерения нониусной шкалы равен величине одного деления шкалы основной.

В процессе измерения, при помощи нониусного штангенциркуля, целое число миллиметров определяется по нулевому штриху на шкале нониуса, а количество десятых долей миллиметра определяется по полностью совпадающим штрихам на основной шкале и шкале нониуса.

Применение нониусного штангенциркуля

Для проведения качественного измерения нониусным штангенциркулем. необходимо удостовериться в его пригодности и работоспособности.

Точные рабочие поверхности инструмента (губки) должны быть без следов износа и повреждений, не перекошены. Рамка должна двигаться, но не шататься на основной штанге, рабочие поверхности не должны быть подвержены коррозии, риски и штрихи основной штанги и нониуса хорошо читаться.

Удостоверившись в отсутствии повреждений, коррозии, геометрической целостности и возможности корректного перемещения рамки, сомкните мерительные поверхности (губки) инструмента и посмотрите на просвет.

При отсутствии износа, губки должны плотно прилегать друг к другу, а нулевые штрихи нониуса и основной штанги должны полностью совпадать.

При смыкании рабочих мерительных поверхностей, просвет (согласно нормативам) не должен превышать 3-х микрон для мерительного инструмента с отсчетом по нониусу 0,05 миллиметра и 6-и микрон для мерительного инструмента с отсчетом по нониусу 0,1 миллиметра.

Техника измерения нониусным штангенциркулем

Измеряемую поверхность предварительно очищают и удостоверяются в возможности качественного проведения измерения. Для проведения измерения, инструмент удерживают в правой руке, при этом подвижная рамка перемещается большим пальцем.

После разведения мерительных поверхностей на расстояние необходимое для помещения измеряемой детали, инструмент смыкают, с небольшим усилием.

Критично важно правильное расположение инструмента для достижения минимально возможного значения ( для наружного измерения) и максимально возможного ( для внутреннего). То есть расположение инструмента должно быть строго перпендикулярно измеряемой поверхности.

Проведение измерений глубиномером проводится непосредственным опиранием торца штанги инструмента на плоскость детали и нажатием на подвижную рамку.

В результате нажатия, измерительный щуп выдвинется на возможную глубину.

В случае проведения разметочных работ, в штангенциркулях предусмотрена дополнительная рамка (микрометрическая подача), связанная с основной рамкой винтовой подачей, для точного перемещения.

Основная и дополнительная рамки имеют возможность жесткой фиксации на главной штанге с целью избежания случайного перемещения.

Линейка измерительная металлическая

Трудно ошибиться, если предположить, что первым измерительным инструментом, с которым знакомится человек, это измерительная линейка, во всех своих проявлениях (портняжный метр, геометрический треугольник и т.д.).

Читать еще:  Инструмент для станка по дереву

Простота и доступность в использовании, делают её самым распространенным измерительным инструментом, правда для не очень точных значений.

При изготовлении поверхность линейки оснащают одной или двумя измерительными шкалами, а само производство и параметры регламентируются ГОСТом.

Согласно ГОСТа 427-75 от 1975 года (который актуален до сих пор), линейки должны изготавливаться со следующими пределами измерений:

Внимательным ГОСТом, также регламентируется параметры наносимых миллиметровых, полусантиметровых, сантиметровых штрихов, а также диаметр отверстия под гвоздик.

Производят измерительные металлические линейки из стальной холоднокатанной термообработанной ленты с полированной поверхностью группы прочности 1П и 2П, с последующим гальваническим хромированием.

Нулевое значение шкалы ( начало отсчета) совпадает с одним из торцов, тогда как второй скруглен и оснащен отверстием (предположительно, под гвоздик, для удобства хранения).

Каждая пяти миллиметровая риска (в сантиметре), для удобства считывания, изготовляется немного выше, своих миллиметровых собратьев, а десятая делается еще выше и получает цифровое обозначение.

Просвет между поверочной плитой и плоскостью линейки, положенной на плиту шкалой вверх, не должен превышать 0,5 мм для линеек с длиной шкалы 150, 300, 500; 0,7- для линеек с длиной шкалы 1000 мм и 1 миллиметр просвета для линеек более одного метра.

Допускаемое отклонение размеров шкалы метровой металлической линейки- +/- 0,2 миллиметра.

Эксплуатация металлической измерительной линейки

Совпадение нулевой отметки (начало отсчета) с торцом линейки позволяет проводить измерение отверстий, пазов, выступов, ступеней и не требующие высокой точности осевые расстояния.

Простота использования измерительной металлической линейки позволяет производить замеры методом прикладывания. Нередко исследуемый предмет фотографируют совместно с линейкой, чтобы впоследствии ориентироваться в геометрических параметрах.

Для определения межосевого расстояния отверстий с одинаковыми диаметрами ( если конструкция детали позволяет приложить измерительный инструмент к плоскости), линейкой замеряют расстояние одноименных поверхностей ( правые края отверстий, левые края отверстий), стараясь, чтобы измерение происходило через центры.

Угольники поверочные

Измерение угловых величин, дисциплина к которой иногда приходится обращаться в строительстве или машиностроении.

В качестве измерительного инструмента для этих целей используют универсальные угловые измерители ( с возможностью устанавливать угловые величины) или специализированные поверочные угольники.

При проектировании, конструкторы чаще выбирают целые угловые величины 30, 45,

60, 90, 120 градусов.

Для нанесения разметки, поверки или определения углов, используют:

  • угольник столярный;
  • угольник плотницкий,
  • угольник комбинированный;
  • угломеры;
  • транспортиры;
  • уровень угломеры;
  • угольник-уровень;
  • уровни угловые и т.д.

При поверке прямых углов применяют угольники.

Угольники у которых сторона не превышает 500 миллиметров, изготавливаются из цементируемой стали с последующей термообработкой и цементацией поверхности.

Угольники поверочные подразделяются на классы точности:

  • нулевой класс точности;
  • первый класс точности;
  • второй класс точности;
  • третий класс точности.

Самый точный — нулевой.

Микрометр механический

Механические микрометры, являются универсальным инструментом, для точных измерений контактным методом. Точность измерения микрометров — от 0,002 до 0,05 миллиметра (в зависимости от параметров измерения и класса точности).

Конструкция механического микрометра

Конструктивно, механический микрометр, представляет собой скобу, подковообразной формы.

С одной стороны скобы размещается измерительная пятка, а с другой, собственно механизм микрометра ( стебель).

Стебель состоит из:

  • барабан с трещоткой;
  • микрометрический винт;
  • стопор.

Главные элементы измерительного устройства, это микрометрический винт и микрометрическая гайка.

Винтовая микрометрическая пара преобразовывает угловое перемещение барабана в линейное перемещение микрометрического винта.

Полные обороты отсчитываются по шкале, нанесенной на стебле микрометра, а доли оборота, отсчитывают по круговой шкале нанесенной на барабан.

Из-за трудности изготовления точной винтовой пары на большой длине, оптимальным считается перемещения винта в гайке только на длину не более 25 миллиметров.

По этой причине, для измерения, изготовляют несколько типоразмеров микрометров, с шагом 25 миллиметров:

Предельный диапазон измерений самого большого микрометра заканчивается на трёх метрах.

При измерении длин более 25 миллиметров, применяется микрометры со сменными пятками, а установка такого микрометра на ноль производят при помощи концевых мер.

Измерение микрометром

Деталь зажимают между измерительными плоскостями, применяя постоянное осевое усилие которое обеспечивается храповым механизмом (трещоткой).

Вращение микровинта следует прекратить после трёх щелчков.

При измерении с помощью механического микрометра, правильно, удерживать его за скобу.

Выставленный размер на микрометре можно зафиксировать, а после измерительных работ необходимо поверить инструмент при помощи эталона.

Оборудование для научных исследований

В ходе этого урока мы познакомимся с оборудованием, с помощью которого ученые и не только проводят свои исследования.

Тема: Человек на Земле

Урок: Оборудование для научных исследований

1. Оборудование для научных исследований

Для наиболее эффективного изучения естественных наук используются различные средства и методы, в число которых входит вспомогательное оборудование.

Оно необходимо для проведения лабораторных, практических работ, а также для постановки экспериментов. Условно все оборудование для научных работ можно разделить на 3 группы:

1. Увеличительные приборы

2. Измерительные приборы

3. Лабораторное оборудование

2. Увеличительные приборы

Увеличительные приборы необходимы для того, чтобы увеличивать в размерах даже самые мельчайшие объекты и предметы.

Наиболее просто устроенным увеличительным предметом являются лупы (Рис. 1). Лупы бывают ручные и штативные. В любом случае, основной частью лупы является линза, выпуклая с двух сторон. Ручная лупа имеет 1 линзу, вставленную в оправу, и у нее имеется специальная ручка. Лупу приближают к предмету до того момента, пока изображение не будет достаточно четким. Штативные лупы имеют 2 линзы, которые прикрепляются на специальном штативе. И такая лупа дает большее увеличение. Если ручная лупа дает увеличение до 10 раз, то штативная — до 20-25 раз.

Более сложно устроенным увеличительным прибором является микроскоп (Рис. 2). В школе, как правило, используют световой микроскоп, дающий увеличение в 3600 раз. Основной частью микроскопа является тубус – это длинная зрительная трубка. С одного конца находится окуляр, с другой – объективы. Тубус прикрепляется к штативу. К нему же присоединяется и предметный столик. На предметном столике имеются специальные зажимы, куда помещается предметное стеклышко с рассматриваемым предметом. Также в нем есть отверстие. Под предметным столиком располагается зеркало, которым можно улавливать и направлять свет. И этот свет как раз проходит через отверстие в предметном столике. Кроме светового на данный момент используются атомные и электронные.

Читать еще:  Смазка для редукторов электроинструмента

К увеличительным приборам, помимо названных, также относятся бинокль, телескоп и многие другие.

Если во время исследования нам необходимо определить длину, величину, температуру, то используют измерительные приборы (Рис. 3).

Каждый измерительный прибор имеет свою шкалу. Она может быть подписана или не подписана. Самое маленькое расстояние между делениями называется ценой деления (Рис. 4).

Одной из измерительных принадлежностей является линейка. Она применяется для небольших измерений, вычислений, геометрических построений. Зачастую на линейке помещается дополнительная информация. А те ученые, которые занимаются картографией, имеют встроенные в линейки лупы с линзами, которые перемещаются вдоль нее.

Еще одним измерительным прибором является секундомер (Рис. 5). В 19 веке он имел всего лишь одну секундную стрелку. Отсюда его название. Сейчас же, помимо секунд, можно измерять и доли секунды, и даже часы. Самое главное, что все секундомеры имеют электронное или механическое устройство, а также кнопки пуска, остановки и возврата к 0.

3. Измерительные приборы

Для научных исследований часто применяют термометры. Есть механические, жидкостные, газовые и ртутные термометры (Рис. 6).

На рисунке ниже приведено строение медицинского термометра (Рис. 7). При повышении температуры ртуть расширяется и поднимается вверх по стеклянной трубке. Он измеряет температуру от 35 до 43,5 градусов.

Также используют тонометр для измерения давления (Рис. 8).

Весы – для измерения веса (Рис. 9).

4. Лабораторное оборудование

Также в школе используется лабораторное оборудование и посуда, необходимые для проведения опытов и экспериментов.

Лабораторная посуда бывает самая различная (Рис. 10). Например, стеклянная. Наиболее часто используемой является пробирка, в которой проводят смешивание химических веществ. Также есть стеклянная палочка для перемешивания различных веществ.

Часовое стекло, на котором можно разглядывать твердые вещества и накрывать посуду во время синтеза (Рис. 11).

Также есть воронки для фильтрации и переливания вещества (Рис. 12).

Чашки Петри (Рис. 13).

Кроме стеклянной посуды имеется также фарфоровая. К ней относят, прежде всего, специальную чашечку с пестиком, в которой измельчают твердые вещества. Также используют чашечки для выпаривания веществ и измерительные приборы (мерные стаканы, колбы, пипетки, пробирки, цилиндры) (Рис. 14).

К лабораторному оборудованию также относят специальный штатив, к которому крепят пробирки, шпатели, держатели, термометры, спиртовки (Рис. 15), электрические плитки и т. д.

5. Дополнительная информация

Изобретение микроскопа

Это открытие, прежде всего, связано с развитием оптики. В 1595 году Захариус Янсон впервые сумел смонтировать нечто подобное микроскопу (Рис. 16). Но увеличение оно давало от 3 до 10 раз. Автор постоянно совершенствовал свое изобретение.

В 1609 году Галилео Галилей немного изменил свою зрительную трубку и научился изменять расстояние между окуляром и объективом. И впервые стал ее использовать как своеобразный микроскоп.

В 1625 году впервые был предложен термин «микроскоп». Его ввел Фабер. А в 1665 году Антони Ван Левенгук рассмотрел строение растительной клетки. И описал строение своего более усовершенствованного микроскопа (Рис. 17).

В 1681 году Роберт Гук открыл животные микроорганизмы. Увеличение его микроскопа было в 270 раз. Вот что он описывал:

Весы

Первое упоминание о весах относится ко 2 тысячелетию до н.э. Считается, что они появились в древнем Вавилоне и Египте. Это были равноплечие весы с двумя подвешенными чашами (Рис. 19).

А уже позднее появились неравноплечие весы с передвижной гирей (Рис. 20).

В 12 веке были созданы весы с погрешностью 0,1%. Они использовались для обнаружения фальшивых монет и камней.

Галилео Галилей создал гидростатические весы для определения плотности.

С момента появления весов людей всегда интересовал вопрос об их точности. И поэтому в России в 996 году князь Владимир водит единую меру весов.

В 12 веке в указе князя Всеволода было сказано о ежегодной проверке весов.

В 1723 году в указе Петра первого тоже появляются сведения о весах. Он говорит:

В 1841 году на территории Петропавловской крепости было построено здание – своеобразное депо мер и весов. Туда приносили проверять свои весы все торговцы.

В 1918 году был принят декрет о введении международной метрической десятичной системы мер и весов. За основу единицы веса был принят килограмм.

Список рекомендованной литературы

1. Мельчаков Л.Ф., Скатник М.Н. Природоведение: учеб. для 3, 5 кл. сред. шк. – 8-е изд. – М.: Просвещение, 1992. – 240 с.: ил.

2. Бахчиева О.А., Ключникова Н.М., Пятунина С.К. и др. Природоведение 5. – М.: Учебная литература.

3. Еськов К.Ю. и др. Природоведение 5 / Под ред. Вахрушева А.А. – М.: Баласс.

Рекомендованные ссылки на ресурсы сети Интернет

Рекомендованное домашнее задание

1. На какие группы разделяют оборудование для научных исследований?

2. Какие существуют увеличительные приборы?

3. Какие существуют измерительные приборы?

4. * Подготовьте небольшое сообщение об истории изобретения и совершенствования какого-либо оборудования для научных исследований на Ваш выбор.

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

Ссылка на основную публикацию
Adblock
detector