Milling-master.ru

В помощь хозяину
132 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Проволочно вырезной электроэрозионный станок неисправности

Проволочно вырезной электроэрозионный станок неисправности

Обрыв электрода в процессе резания является одним из существенных минусов проволочно-вырезной электроэрозионной обработки. В первую очередь это связано с тем, что на поверхности обработанной детали остаются видимые следы – ступеньки, которые впоследствии требуют дополнительной зачистки, что приводит к снижению качества поверхности. Кроме того, обрыв электрода приводит к полной остановке всего процесса резания. Оператору необходимо в ручном режиме самостоятельно заправить проволоку в фильеры станка и, если невозможно продолжить операцию резания с места обрыва, заново запустить всю технологическую операцию. В результате возрастает время изготовления одной детали. В настоящее время нет однозначного ответа на вопрос возникновения причин обрыва проволоки.

Целью исследования является установление причины, вызывающей разрыв электрода-инструмента при проволочно-вырезной электроэрозионной обработке.

Материал и методы исследования

Процесс электроэрозионной обработки протекает за счет кратковременных импульсов электрического тока. Таким образом, при подключении электродов к прямой полярности происходит максимальная концентрация количества теплоты на электроде-детали и минимальная на электроде-инструменте. В результате чего происходит обработка заготовки при минимальном износе электрода-инструмента. Можно предположить, что при обрыве электрода-проволоки на его поверхности происходит резкое возрастание количества тепловой энергии. Подобное явление может быть объяснено тем, что в канале пробоя вместо импульса тока образовалась электрическая дуга. Согласно закону Джоуля-Ленца при возникновении короткого замыкании резко и многократно возрастает сила тока, протекающего в цепи, что приводит к значительному тепловыделению [1; 3; 5]. Обильное количество теплоты, выделившееся в промежуток, ведет к расплавлению и разрыву проволоки.

Количество выделяющегося в проводнике тепла пропорционально его сопротивлению, квадрату силы тока и времени [4]:

С другой стороны, для того чтобы произошел разрыв электрода-проволоки, на него необходимо сообщить количество теплоты, необходимое на его нагрев, плавление и испарение. В этом случае можно воспользоваться формулой, предложенной в работах [1-3]:

Приравняв между собой уравнения (1) и (2), выражаем величину силы тока, возникающего в канале пробоя:

где V – объем удаленного материала электрода-проволоки (м3).

Для вычисления удаленного объема был проведен эксперимент. Суть эксперимента заключалась в обработке листовых заготовок, выполненных из материала «Сталь 65 Г» по ГОСТ14959-70, на разных режимах и при разном сочетании числа деталей, собранных в пакет. В ходе эксперимента выявлялись режимы, на которых происходит обрыв электрода-проволоки. После чего были исследованы концы оборванного электрода и рассчитан объем удаленного материала.

Эксперименты проводились на проволочно-вырезном электроэрозионном станке EcoCut. Количество заготовок в пакете варьировалось от 1 до 15. Толщина одной заготовки 2 мм. Межслойный зазор отсутствовал. В процессе резания варьировались параметры импульса: toff от 30 до 60 мкс, и ton от 1 до 30 мкс.

Результаты исследования и их обсуждение

Из результатов проведенного эксперимента следует, что обрыв электрода происходил независимо от высоты собранного пакета. Основополагающими факторами являлись параметры импульсов. Постоянный обрыв электрода наблюдался на режимах toff = 51 мкс, ton = 30 мкс. Сила тока при обработке на остальных режимах была стабильна и варьировалась в диапазоне от 1 до 2 А. Установлено, что обработку заготовок целесообразнее проводить на режиме ton= 21 мкс; toff= 60 мкс при сборке в пакет 15 заготовок. При таком сочетании режимов наблюдается оптимальная производительность. Увеличение числа заготовок приводит к снижению производительности резки, что делает процесс обработки экономически нецелесообразным.

Исследование поверхности проволоки после резки происходило на микроскопе OlympusGX51. Коэффициент коррекции измеренных результатов при работе на данном микроскопе равняется 1,5.

На рис. 1 представлена поверхность проволоки при увеличении х100 крат.

Рис. 1. Поверхность электрода, х100

Из рисунка видно, что диаметр обработанной проволоки не постоянен, характерны следы испарения металла. Такую структуру проволока принимает при силе тока 1 А.

На рис. 2 (а, б) и 3 (а, б) представлены концы электродов после обрывов на режимах ton =30 мкс и toff =51 мкс.

Рис. 2. Концы оборванного электрода х100: а) при обработке 1 заготовки; б) при обработке 5 заготовок.

Рис. 3. Концы оборванного электрода х100: а) при обработке 10 заготовок; б) при обработке 15 заготовок.

Из рис. 2 и 3 видно, что размеры оборванных концов электрода не отличаются существенным образом.

Объём удалённой проволоки находится по формуле [4]:

где ;

Объём удалённой проволоки рассчитывается на длине 200 мкм.

Зная объём удалённого металла, можно рассчитать силу тока, проходящую при разрыве электрода:

где плотность латуни ; удельная теплоёмкость латуни с=400 Дж/кг °С; удельная теплоёмкость жидкой меди =545 Дж/кг °С; напряжение на проводнике U= 50 В; время включения импульса =30 мкс; разница начальной и конечной температуры нагрева C; разница температуры испарения и кипения C; удельная теплота плавления латуни = удельная теплота парообразования Дж/кг.

Читать еще:  Правильно отрезной станок б у

Анализируя полученные результаты, видим, что в процессе обработки происходит резкое возрастание силы тока от 1 до 288 А, что приводит к немедленному разрыву проволоки. Следовательно, можно предположить, что гипотеза возникновения в процессе резания электрической дуги подтверждается. В таком случае причиной возникновения дуги являются вторичные разряды, возникающие между ЭИ и металлическим шламом, заполняющим канал пробоя, а также наличие в МЭЗ воздуха. Для получения более полной картины протекания процесса ЭЭО пакетированных заготовок необходимо оценить влияние межслойного зазора между заготовками на стабильность процесса резания.

Рецензенты:

Иванов В.А., д.т.н., профессор, заведующий кафедрой «Металлорежущие станки и инструменты» механико-технологического факультета ФГБОУ ВПО «Пермский национальный исследовательский политехнический университет», г. Пермь.

Синани И.Л., д.т.н., профессор кафедры «Сварочное производство и технология конструкционных материалов» ФГБОУ ВПО «Пермский национальный исследовательский политехнический университет», г. Пермь.

Ремонт электроэрозионных станков в СПб

Одним из современных способов обработки металлов является электроэрозионная обработка, принцип действия которой основан на изменении формы и размеров заготовки под воздействием электрических разрядов. Такие разряды инициируют с помощью электрического тока между электропроводной заготовкой и электродом-инструментом.

Отличительной особенностью данного типа станков является то, что с их помощью можно обрабатывать заготовки как из конструкционных, так и из сталей и сплавов повышенной прочности. Например, из закаленных сталей, твердых сплавов, нержавеющих сталей и др.

На сегодняшний день наибольшее распространение получили два типа электроэрозионных станков: проволочные вырезные и копировально-прошивочные. Первый тип станков предназначен для изготовления деталей сложного профиля с прямолинейной образующей, таких как: составные части вырубных штампов, матриц для экструдирования, фильер и т.п.

Копировально-прошивочные станки используются для изготовления в токопроводящих деталях глухих и сквозных отверстий различной формы, фасонных полостей. С помощью таких станков можно изготавливать пресс формы, вырубные штампы, матрицы и другие детали объёмной формы.

Компания «ИМПУЛЬС» осуществляет модернизацию и ремонт электроэрозионных станков любых типов отечественных и зарубежных производителей.

Ремонт проволочных вырезных электроэрозионных станков

В процессе длительной эксплуатации проволочных вырезных электроэрозионных станков изнашиваются прецизионные механизмы позиционирования стола, блок перемотки-натяжения молибденовой проволоки, электроды, фильеры и т.п., в результате чего снижаются точность изготовления и чистота обработки поверхности. Поэтому ремонт электроэрозионных станков данного типа, в первую очередь, связан с возвращением заявленной заводом-изготовителем точности производства деталей.

Восстановление заданных параметров по максимально допустимым значениям отклонения позиционирования проводят путём ревизии механизмов, перемещающих плиту магнитного стола. Инженеры компании произведут разборку, проверку и, при необходимости, замену ходовых винтов, разрезных гаек и шариковинтовых пар.

Обязательной проверке на степень износа и отклонения от исходных геометрических параметров подвергают все направляющие, которые обеспечивают точность перемещения плиты магнитного стола в координатной плоскости. При необходимости плоскости направляющих выравниваются методами шлифования или шабрения.

После ремонта и сборки механизма позиционирования стола проводят замеры, юстировку и тестирование его работы. Проверяют правильность позиционирования в станочной системе координат по референтным точкам, тестируют работу датчиков положения (угловых и линейных). В случае использования угловых инкрементных датчиков положения, инженеры компании определяют наличие осевых микролюфтов и люфтов в редукторе, которые проявляют себя при реверсе движения. Определённые систематические ошибки позиционирования инженеры заносят в блок ЧПУ в виде поправочных коэффициентов.

Ремонт блока перемотки-натяжения проволоки предполагает замену всех изношенных деталей и узлов с целью восстановления равномерности движения и натяжения закольцованной молибденовой проволоки. Проверяется также качество электрической изоляции корпуса станка от всех частей тракта движения, соприкасающихся с проволокой.

Ревизия и ремонт системы подачи охлаждающей жидкости призваны восстановить силу потоков (верхнего и нижнего) и обеспечить необходимые условия охлаждения и промывки эрозионного промежутка.

Правильная работа генератора технологического тока обеспечивает эффективный пробой в эрозионном канале и разрушение материала заготовки. Старение или выход из строя элементов силовой и поджигающей секций генератора может приводить к искажению формы импульса или к уменьшению его мощности. Проведение ремонтных работ позволит восстановить КПД генератора технологического тока и обеспечить стабильность требуемой амплитуды и крутизну фронта импульса тока.

Ремонт копировально-прошивочных электроэрозионных станков

Процедура ремонта копировально-прошивочных электроэрозионных станков включает в себя восстановление работоспособности и исходных технических параметров для механизмов трёхосевого перемещения шпиндельной головки и рабочего электрода, системы подачи и очистки рабочей жидкости, системы удаления и нейтрализации выделяющихся вредных газов, генератора импульсного тока, системы защиты от перегрузок и короткого замыкания.

Читать еще:  Лазерный станок для резки металла купить бу

Инженеры компании «ИМПУЛЬС» обладают опытом проведения полного комплекса ремонтных работ электроэрозионных станков разных моделей от зарубежных (Agie, AEG, Charmilles, Mikron, Mitsubishi и др.) и отечественных производителей (АРТА, ЕДМ инжиниринг, ТроицкСтанкоПром, Станкофинэкспо, Станкоконструкция и др.). Ремонт станков может производиться как на территории заказчика, так и в цехах компании «ИМПУЛЬС».

Модернизация электроэрозионных станков

Во время проведения капитального ремонта можно существенно улучшить технические параметры станка, проведя модернизацию его узлов и механизмов. Опытные специалисты компании могут выполнить такие виды работ:

  • модернизацию системы управления станком;
  • замену устаревшего генератора технологического тока на современную модель повышенной мощности и с большим КПД;
  • установку более совершенной системы очистки и подачи рабочей жидкости;
  • установку современных приводов.

Модернизация электроэрозионных станков позволяет:

  • улучшить точность позиционирования детали;
  • поднять чистоту обработанной поверхности,
  • ­увеличить скорость резания металла,
  • повысить стабильность процесса электроэрозии;
  • упростить процесс программирования и управления станком.

Специалисты компании «ИМПУЛЬС» гарантируют высокое качество выполнения работ по ремонту и модернизации вашего промышленного оборудования.

Электроэрозионный станок — принцип работы, устройство и назначение

Обработка материалов с плотной структурой ручным способом малоэффективна, так как требует больших трудозатрат и не обеспечивает высокой точности. Среди установок, которые позволяют в какой-то степени или полностью (зависит от вида и модели) автоматизировать процесс, электроэрозионные станки менее известны, хотя они и отличаются уникальными возможностями, что выгодно выделяет их среди большинства «собратьев» по станочному парку.

Об особенностях, принципе работы и специфики применения электроэрозионных станков и будет рассказано в предлагаемом читателю материале.

Общая информация

  • Независимо от модели, электроэрозионные станки имеют ограничение по обработке деталей. Они могут использоваться для выполнения различных операций лишь в том случае, если образец изготовлен из материалов категории «токопроводящие» (металлы, сплавы).
  • Существует несколько методик электроэрозионного воздействия на изделие, отличающихся как способом подачи электрических разрядов, так и параметрами импульсов. В соответствие с этим, все подобные станки позволяют изготавливать детали по-разному, в зависимости от ожидаемого результата.
  • Несомненный плюс электроэрозионных установок – возможность ведения обработки образца одновременно по разным направлениям.

Что может получиться в результате, показано на схемах (наиболее распространенные варианты использования электроэрозионных станков).

Способы обработки заготовок

  • эл/импульсный;
  • эл/искровой;
  • анодно-механический;
  • эл/контактный.

Виды технологических операций

  1. Упрочнение структуры.
  2. Шлифовка.
  3. Маркирование.
  4. Вырезание.
  5. Доводка.
  6. «Прошивка».
  7. Отрезка.
  8. Объемное копирование.
  9. Обработка:
  • электроэрозионно-абразивная;
  • анодно-механическая;
  • электрохимическая;
  • комбинированная.

Возможности электроэрозионного оборудования

Спектр использования электроэрозионных станков действительно огромен. Из основных технологических операций можно выделить:

  • получение отверстий (глухих проемов, углублений) самой сложной конфигурации, при необходимости, с резьбой;
  • выборка материала на любую глубину с внутренних поверхностей образцов;
  • выполнение операций, которые невозможно или экономически нецелесообразно проводить на других типах станков (фрезерных, токарных);
  • изготовление деталей из материалов, трудно поддающихся обработке традиционными инструментами (например, титан и сплавы на его основе).

Принцип работы станков электроэрозионного типа

Несмотря на разницу в конструктивном исполнении оборудования и реализуемых способах электроэрозионной обработки, принцип функционирования остается одинаковым.

Условно процесс можно разделить на два технологических этапа.

Первый. Под воздействием импульсных разрядов, поступающих «по плазменному каналу» (10), разрушается структура образца (2) на данном участке. Они появляются в определенный момент при сближении электрода (4), являющимся рабочим инструментом станка, с деталью. Электрическая энергия преобразуется в тепловую, и как результат – расплавление металла (сплава) на требуемом по ТУ участке.

Второй. Так как и деталь, и электрод погружены в емкость со спец/составом (чаще всего это масло), металл частично испаряется от высокой температуры, а остатки расплава удаляются из рабочей зоны.

В зависимости от реализуемого способа обработки и инженерного решения в конструкции станка, параметры импульсов, технология их генерирования и ряд других факторов в различных моделях электроэрозионных установок могут отличаться. Но принцип работы оборудования остается прежним.

В принципе, такую «чудо-машину», как электроэрозионный станок, можно изготовить самостоятельно. Но кажущаяся простота сборки обманчива. Прежде чем приниматься за работу, следует оценить свои силы. Главная сложность, с которой столкнется «домашний умелец» – монтаж (а перед этим точный расчет параметров) искрового генератора. Кроме того, эксплуатация данного станка требует особой осторожности, так как емкость с маслом в любой момент может воспламениться. Автор не ставит целью отговорить читателя от самостоятельного изготовления бытового электроэрозионного станка, но обратить внимание на ряд моментов просто обязан.

Читать еще:  Накатной станок для накатки резьбы

Зачем нужен электроэрозионный проволочно-вырезной станок?

Электроэрозионный проволочно-вырезной станок служит для аккуратного исполнения отверстий в металлах различной плотности. Движение инструмента происходит с высокой точностью и плавностью. Двигатели к нему производятся на предприятии — изготовителе станков — по уникальной технологии.

Конструкция

Электроэрозионный проволочно-вырезной станок оснащается плоскопараллельными двигателями. Для этого производители создают свои неодимовые магниты (NdFeB — неодим-железо-бор). Кроме них потребовалась и уникальная система управления K-SMS.

Классический электроэрозионный проволочно-вырезной станок способен обрабатывать только электропроводящие заготовки. Металлы прожигаются дугой на значительную глубину. На месте среза остается гладкая поверхность, часто не требующая дополнительной обработки.

Электроэрозионный проволочно-вырезной станок помогает получить сложные изделия: пресс-формы, штаммы, конические и цилиндрические поверхности, выступы и скосы. В продаже можно найти двухкоординатные сборки, применяемые для простейших операций. Более сложные изделия получаются с применением пятикоординатных машин.

Принцип работы

В процессе применения проволочно-вырезного станка латунная проволока используется наиболее часто в качестве режущего инструмента. Она выполнятся по уникальной технологии, и от её качества зависит скорость и аккуратность обработки.

Если применяется генератор высокочастотных импульсов повышенной мощности, встроенный в описываемый станок, латунная проволока оснащается специальным покрытием. Ее структура имеет несколько слоев:

  • Основа — CuZn40 (медно-цинковый сплав) или латунь. Также может использоваться молибден, медь.
  • Термодиффузионный слой — концентрация цинка более 50%.
  • Верхний слой — чистый цинк.

За счёт такой структуры проволока обладает рядом достоинств:

  1. Выдерживает высокие температуры.
  2. Дуга в процессе обработки стабильна, исключается образование наплывов на месте разреза.
  3. Снижен расход проволоки на длину разреза.

Проволочные электроэрозионные станки с ЧПУ применяются, в основном, в серийном производстве. Единичные изделия не оправдывают покупку дорогостоящего оборудования, но некоторые детали возможно получить только данным видом реза. Покрытие из цинка обеспечивает непрерывность автоматического процесса за счёт исключения осыпания латуни от высокочастотных токов.

Процесс обработки

Электроэрозионная обработка материалов основана на образовании искры за счёт пропускания тока высокой частоты через минимальный воздушный или водный зазор. Наиболее активно этот процесс происходит с участием латуни.

Существует несколько типов обработки металлов на приведенном оборудовании:

  • Копировально-прошивочные технологии.
  • Профильно-вырезные.
  • Прошивочные.

Чаще проволока для электроэрозионных станков крепится на подвижный узел. Заготовка же размещается на неподвижном столе. Процесс реза контролируется контроллером системы ЧПУ, управляющей одновременно несколькими осями.

Суть технологии

Электрический разряд между проволокой и заготовкой приводит к удалению части металла. Выделенные частицы выводятся в объем рабочей жидкости. Шлам (кристаллизующиеся частицы) отфильтровывается и удаляется в конце реза. Скорость обработки регулируется силой тока. Но должны быть подобраны оптимальные режимы, при которых не образуются наплывы в процессе реза.

Электроэрозия помогает изготовить изделия с очень тонкими стенками, обрабатывать мягкие металлы без механических повреждений. Данный способ резки используется для прошивки на большую глубину. Толщина проволоки минимальна, лишь этим параметром ограничен диаметр получаемых отверстий.

Дополнительной обработки не требуется, так как после реза импульсами тока не остается заусенцев. Также не требуется дорогостоящего инструмента, применяемого при классических методах фрезерования. Это становится актуально при заготовках из вязких материалов.

Параметры оборудования

ЧПУ-управление процессом расширяет возможности обработки металлов электроэрозией. Отклонения перпендикулярностей и прямолинейностей перемещения осей составляют не более 0,01 мкм.

Механическая точность заявлена производителями, и не требуется делать дополнительных регулировок. Станок полностью готов к старту автоматического цикла, достаточно лишь загрузить модель детали в стандартном коде.

Современная электроника обеспечивает точности перемещения за счёт угловых и линейных датчиков, разрешение которых равно 1,5 мкм. Точность получаемых контуров варьируется в пределах от ± 1,5 до ± 5 мкм на длине 300 мм.

Характеристики подбираются индивидуально под потребности производства. Исходя из этого формируется стоимость оборудования, ориентированная на подходящую модель.

Дополнительные опции

Покупатель станка с электроэрозией может дооснастить оборудование представленными опциями:

  • Контролируемое положение оси C. Чаще требуется для фрезерной обработки цилиндрических заготовок.
  • Револьверная головка с дополнительными степенями свободы инструмента. При помощи такой модели получают геометрически сложные детали.
  • Стол может иметь дополнительные оси. Такой вариант используется при обработке корпусных изделий или нескольких заготовок за один цикл.

В стандартную комплектацию включают системы очистки рабочей жидкости, позволяющие проводить фильтрацию с качеством до 3 мкм. Загрязнившиеся картриджи имеют стандартные размеры и меняются довольно быстро.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector